
Does Beautiful Code Matter? We think, So. . .

by

Nicholas Vaidyanathan

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved September 2018 by the
Graduate Supervisory Committee:

Dr James Collofello, Chair
Dr. Robert Atkinson

Dr. Hessam Sarjoughan
Dr. Hasan Davulcu

ARIZONA STATE UNIVERSITY

December 2018

ABSTRACT

In this dissertation, I explored the state of the literature of software engineering and

found that while multiple schools of thought exist, most practitioners argue there is

no consensus on a theory to guide software engineering [1, 2, 3]. Agile practitioners

have developed a set of guiding principles and tools commonly advocated in industry

such as the SOLID design principles for writing code, but these remain experiential

rather than experimentally verified.

Cognitive Science developed a theoretical framework for guiding the development

of curricular material called Cognitive Load Theory (CLT)[4, 5]. CLT derives from

the earliest discoveries of neuroscience [6], its central precepts involve the design of

instructional content and arrangement in a way that is cognitively available. CLT

seeks to understand the human memory model, specifically the limits of short-term

“working memory” [7], and optimize content for memorability. CLT has been effec-

tively applied in a variety of instructional materials and verified via lab experiments

since the in 1970s.

Software is essentially a concretion of a programmer’s understanding of the world

to create emergent behavior. The core activity of programming is the organization

and arrangement of information as realized in data structures and algorithms. Soft-

ware has explored the complexity of this practice through a variety of metrics, some

of which include McCabe’s Complexity Metrics [8], Halstead’s Software Science [9],

Albrecht’s Function Points [10], and Wang’s Cognitive Complexity Metrics [11, 12].

I found no examples of known metrics that leveraged CLT in their development.

My work explores a conceptual link between CLT and software engineering best

practices. I provide a partial mapping of refactoring techniques and SOLID princi-

ples to CLT principles. This link moves software engineering towards a theoretical

framework based on human cognition. This dualistic tie can help both fields. Instruc-

i

tional Designers can organize webs of content according to distributed systems design

principles, while software engineers can leverage principles backed by a theoretical

framework, experimental approach, and known principles of human cognition.

I designed an experiment that explored the effects of applying these principles

on an established software library. I measured the perceived cognitive load, time

to debug/mean-time to resolution, and defects introduced via broken tests using a

2x2 Factorial Design with experienced and novice software engineers. With a sample

size of n=188, I measured that the average mean time to resolution and number

of bugs reported by both experienced and novice programmers. I found that the

mean time to resolution and introduced defect rate is less for both experienced and

novice developers when debugging the refactored code, aligning with concepts from

Cognitive Load Theory. I also find that those programmers reported less perceived

cognitive load.

Agile design principles combined with the precepts of Cognitive Load Theory can

produce software that is measurably easier to debug and understand. Augmenting

known refactoring patterns with additional heuristics–such as managing the size of

classes and methods to around Miller’s Magic Number and naming concepts according

to their usage– produces novel software architectural principles as a consequence

of this work. This has implications on Cognitive Load as a measurement for and

conceptual backbone of technical debt. Future work should probe advanced ways of

measuring cognitive load and programmer experience and the effect of programming

language and domain.

This research provides a significant contribution by applying concepts and ex-

perimental design from CLT to software engineering. The study measurably shows

that code refactored according to specific principles designed to manage cognitive

load results in software that is better understood and easier to debug. Looking at

ii

code comprehensibility for programmers through the lens of CLT may lead to new

techniques of quantifying readability and analyzing technical debt.

iii

To my Poobah, who has never stopped believing in me and always inspired me. I

love you.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

2 LITERATURE REVIEW . 4

2.1 Establishing the link between Cognitive Load Theory and Software

Engineering through Software Craftsmanship . 9

2.1.1 Open-Closed Principle . 10

2.1.2 Newspaper Metaphor . 10

2.1.3 Design Patterns . 11

2.1.4 Intrinsic, Germane, and Extraneous Cognitive Load 11

2.1.5 Split Attention Effect . 12

2.1.6 Expertise Reversal Effect . 12

2.1.7 Applied Example of the types of Cognitive Load in software . 13

2.2 Theory & Predictions . 19

2.3 Research Question: Can Cognitive Load Theory provide empirical

evidence and a conceptual framework for the efficacy of Refactoring? 21

2.3.1 Why will this be meaningful? . 21

2.3.2 What could go wrong? . 22

2.3.3 How can one measure the Cognitive Load of code? 22

3 OVERVIEW OF PRESENT EXPERIMENT . 24

3.1 Participants . 24

3.2 Materials . 25

3.2.1 Software Chosen - Joda Time . 25

v

CHAPTER Page

3.2.2 Why Joda Time? . 25

3.2.3 What experimental intervention did I make to Joda-time? . . 26

3.2.4 What change did the participants have to make? 27

3.2.5 Bug: ISO8601 Years. 27

3.2.6 Analysis of Accepted Solution . 30

3.3 Experimental Environment . 31

3.3.1 Aside: The IDE effect . 31

3.3.2 Cognitive Load measurement - Likert Scale 33

3.3.3 Minimal Cognitive Load of expressions axioms 34

3.3.4 Likert Scale: line-by-line . 35

3.3.5 Minimal Cognitive Load of lines axioms 35

3.3.6 Likert Scale: blocks/scopes . 36

3.3.7 Minimal cognitive load of blocks/scopes axioms 36

3.3.8 Open Question: How do we measure code flow cognitive

complexity? . 36

4 METHOD . 40

4.1 Materials Design . 40

4.2 Intervention, Measures, and Procedure . 41

5 RESULTS . 42

5.1 Mean Response Time for participants who fixed the bug 42

5.2 Mean Regressions for those who did not fix the bug 44

5.3 Perceived Cognitive Load. 45

5.4 Discusion . 46

6 LIMITATIONS . 48

vi

CHAPTER Page

7 IMPLICATIONS . 49

8 FUTURE DIRECTIONS . 50

REFERENCES . 52

APPENDIX

A LIKERT SCALE FOR CONTROL STUDY . 59

B LIKERT SCALE FOR EXPERIMENTAL STUDY. 61

C MEASURING THE COGNITIVE LOAD OF CODE: 64

C.1 Review. 64

C.2 Bug: ISO8601 Years . 64

C.3 Analysis of Accepted Solution . 65

C.4 Experiment: contrast debugging time and performance of accepted

solution versus CLT optimized . 65

C.5 Development of Experimental Version . 66

C.5.1 Starting small: sequencing, chunking, and intrinsic com-

plexity at the variable and method level 66

C.5.2 Building up: moving on to the class level 68

C.6 Reducing Control Flow Complexity . 75

C.6.1 Checking my biases: adapting to peer feedback 89

C.6.2 Architectural adaptation: Simplifying DateTimeFormatter . . 89

C.6.3 Signaling architecture by organization – using packages as

chunks . 146

C.6.4 Making Derived Components Expressive, the value of names 152

C.6.5 The Final Form – calculate in the NumberFormatter, Nu-

mericSequence . 155

vii

CHAPTER Page

C.7 The Experimental Solution . 159

C.7.1 Side-by-Side comparison . 159

viii

LIST OF TABLES

Table Page

5.1 Mean Response Time of fixing bug . 42

5.2 Test of Between Subjects Effects . 43

5.3 Mean Response Time of fixing bug . 44

5.4 Test of Between Subjects Effects . 44

ix

LIST OF FIGURES

Figure Page

2.1 insert caption . 13

2.2 insert caption . 14

2.3 insert caption . 15

2.4 insert caption . 16

2.5 insert caption . 17

2.6 insert caption . 17

2.7 insert caption . 17

3.1 insert caption . 28

3.2 Shankar’s Fix . 29

3.3 insert caption . 35

3.4 Date Time Formatter . 38

5.1 Estimated Marginal Means of Time 43

5.2 Estimated Marginal Means of Regressions 45

C.1 insert caption . 66

C.2 insert caption . 68

C.3 insert caption . 69

C.4 insert caption . 70

C.5 insert caption . 71

C.6 insert caption . 71

C.7 insert caption . 72

C.8 insert caption . 72

C.9 insert caption . 73

C.10 insert caption . 74

C.11 insert caption . 74

x

Figure Page

C.12 insert caption . 75

C.13 insert caption . 76

C.14 insert caption . 76

C.15 insert caption . 77

C.16 insert caption . 78

C.17 insert caption . 79

C.18 insert caption . 79

C.19 insert caption . 80

C.20 insert caption . 80

C.21 insert caption . 81

C.22 insert caption . 82

C.23 insert caption . 82

C.24 insert caption . 83

C.25 insert caption . 83

C.26 insert caption . 84

C.27 insert caption . 84

C.28 insert caption . 85

C.29 insert caption . 85

C.30 insert caption . 86

C.31 insert caption . 86

C.32 insert caption . 87

C.33 insert caption . 87

C.34 insert caption . 88

C.35 insert caption . 88

xi

Figure Page

C.36 insert caption . 89

C.37 insert caption . 90

C.38 insert caption . 91

C.39 insert caption . 91

C.40 insert caption . 92

C.41 insert caption . 92

C.42 insert caption . 93

C.43 insert caption . 94

C.44 insert caption . 95

C.45 insert caption . 96

C.46 insert caption . 96

C.47 insert caption . 97

C.48 insert caption . 97

C.49 insert caption . 98

C.50 insert caption . 98

C.51 insert caption . 99

C.52 insert caption . 99

C.53 insert caption . 100

C.54 insert caption . 101

C.55 insert caption . 102

C.56 insert caption . 103

C.57 insert caption . 104

C.58 insert caption . 105

C.59 insert caption . 106

xii

Figure Page

C.60 insert caption . 107

C.61 insert caption . 108

C.62 insert caption . 109

C.63 insert caption . 110

C.64 insert caption . 111

C.65 insert caption . 112

C.66 insert caption . 113

C.67 insert caption . 114

C.68 insert caption . 115

C.69 insert caption . 116

C.70 insert caption . 117

C.71 insert caption . 118

C.72 insert caption . 119

C.73 insert caption . 120

C.74 insert caption . 121

C.75 insert caption . 121

C.76 insert caption . 122

C.77 insert caption . 123

C.78 insert caption . 123

C.79 insert caption . 124

C.80 insert caption . 124

C.81 insert caption . 125

C.82 insert caption . 125

C.83 insert caption . 126

xiii

Figure Page

C.84 insert caption . 126

C.85 insert caption . 127

C.86 insert caption . 128

C.87 insert caption . 129

C.88 insert caption . 129

C.89 insert caption . 130

C.90 insert caption . 130

C.91 insert caption . 131

C.92 insert caption . 131

C.93 insert caption . 132

C.94 insert caption . 132

C.95 insert caption . 133

C.96 insert caption . 134

C.97 insert caption . 134

C.98 insert caption . 135

C.99 insert caption . 135

C.100 insert caption . 136

C.101 insert caption . 136

C.102 insert caption . 137

C.103 insert caption . 138

C.104 insert caption . 139

C.105 insert caption . 140

C.106 insert caption . 140

C.107 insert caption . 141

xiv

Figure Page

C.108 insert caption . 142

C.109 insert caption . 143

C.110 insert caption . 144

C.111 insert caption . 145

C.112 insert caption . 145

C.113 insert caption . 146

C.114 insert caption . 147

C.115 insert caption . 147

C.116 insert caption . 148

C.117 insert caption . 148

C.118 insert caption . 149

C.119 insert caption . 149

C.120 insert caption . 150

C.121 insert caption . 150

C.122 insert caption . 151

C.123 insert caption . 151

C.124 insert caption . 152

C.125 insert caption . 153

C.126 insert caption . 153

C.127 insert caption . 154

C.128 insert caption . 154

C.129 insert caption . 155

C.130 insert caption . 155

C.131 insert caption . 156

xv

Figure Page

C.132 insert caption . 156

C.133 insert caption . 157

C.134 insert caption . 157

C.135 insert caption . 158

C.136 insert caption . 158

C.137 insert caption . 159

C.138 insert caption . 159

C.139 insert caption . 160

C.140 insert caption . 160

C.141 insert caption . 161

C.142 insert caption . 161

C.143 insert caption . 162

C.144 insert caption . 162

xvi

Chapter 1

INTRODUCTION

Software engineering is one of the youngest and most dynamic fields in engineering.

Naur and Randell helped formally define and introduce Software engineering as an

area of study in 1968 with their landmark NATO software engineering report. [13]

The most striking finding in the report was the startling conclusion that 68% of

all software projects fail. Since then, researchers have investigated many different

approaches to extract software from the “tar pit” [14]. Explorations have spanned

a variety of both technical and non-technical solutions, spawning research in areas

as disparate as software cost and estimation, software architecture and design, and

software project and process management. Nevertheless, despite the dedicated effort

of researchers and practitioners, in over 40 years since the landmark initial paper,

research has made minimal ingress against the problem. A follow-up report by the

Standish group in the 1990s suggested that overruns are still close to 189% [15],

though the numbers are in dispute [16, 17]. The 2015 CHAOS report shows that 52%

of projects are challenged, 19% failed [15].

One possible root cause of this churn arises from the inherent difficulty of the base

activity of software engineering: computer programming. Leading software engineer-

ing practitioners argue that there are better ways to engineer software [18, 19], the

Agile software philosophy. Tools such as Test-Driven Development [20, 21], Design

Patterns [22, 23], and Object-Oriented Programming [24, 25, 26, 27]. Unfortunately,

there is a dearth of empirical evidence supporting these practices [28] [1]. Moreover,

software engineering has yet to develop a strong, unifying theory that can serve as an

conceptual framework for software engineering study [2] [3].

1

In parallel, cognitive science developed from the frontiers of psychology into a

broad, impactful field that enhanced understanding of the human brain. Developing

quickly from George Armitage Miller’s insight about the limits of human working

memory [6], cognitive science blossomed into a myriad of disciplines exploring dif-

ferent aspects of human cognition. One of these fields emerged in the 1980s when

John Sweller studied problem solving and developed Cognitive Load Theory (CLT)

. Based on the work of Miller, Baddeley’s working memory model [7], and collected

evidence about short-term “working” memory, Cognitive Load Theory studies effects

the arrangement and presentation of learning content has on learner memory and

performance. From years of development across a variety of domains, CLT has shown

evidence for particular phenomena such as the Split-Attention Effect [29] and the Re-

dundancy Effect [5]. Instructional Designers adopted the findings of CLT into their

materials and began to achieve measurable, repeatable results that validated these

findings and produced more efficient learning material.

These two fields are evolving independently, in parallel. But should they? Fred

Brooks describes software as complex to build because “The programmer, like the

poet, works only slightly removed from pure thought-stuff. He builds his castles in

the air, from air, creating by exertion of the imagination. Few media of creation are so

flexible, so easy to polish and rework, so readily capable of realizing grand conceptual

structures...” [30] Additionally, Kent Beck describes the purpose of programming as

”What is it that we want to get out of code? The most important thing is learning.

The way I learn is to have a thought, then test it out to see if it is a good thought.

Code is the best way I know of to do this.” [31] Elements of memory, organization

of information, and learning appear prodigiously through software literature, but ties

to CLT are scant to nonexistent.

The question of whether CLT could inform the theory and practice of software

2

engineering and its fundamental activity of computer programming drove this re-

search. In this dissertation, I showed that it can. I suggested that a sampling of the

best practices of object oriented analysis and design corresponded to conceptual best

practices in Cognitive Load Theory. Using this premise, I designed an experiment

similar to traditional CLT experiments that measured the efficiency of programmers

to debug and fix software as a function of time to resolve an issue, defects introduced,

and perceived cognitive load. I found that amongst both novice and experienced

programmers, more people were capable of fixing a bug in refactored code, and that

it took less time and introduced less average defects. I found that the subject’s inter-

nal measurement of Cognitive Load in the refactored code was less than the original

code. This suggests that CLT can make a promising contribution into the scientific

understanding of the complexity of software systems, providing a basis to evaluate

software designs and understand technical debt.

3

Chapter 2

LITERATURE REVIEW

In the introduction, I gave a high level overview of software engineering and cogni-

tive load theory and the origins of the fields. In this section, I start by reviewing the

literature of software engineering and computer science as it has related to specific

attempts to influence the practice of programming. Software engineering research

covers a space as disparate as processes surrounding the elicitation of software re-

quirements, visualization techniques for software designs, estimation practices for

predicting delivery cycles, probabilistic testing, and more. I viewed CLT specifically

from the frame of how it can influence the practice and understanding of program-

ming. I progress chronologically, looking at specific programming recommendations

of the 1970s and 1980s and moving towards the 2000s and 2010. I also review the way

computer science has attempted to quantify the concept of complexity in computer

programs through the development of metrics. I find that although CLT is neither

directly invoked nor indirectly referenced, much of the modern practitioner literature

of Agile Software Development and Software Craftsmanship [32] extensively focus on

the comprehensibility of computer programs. The practices and principles proposed

in these works have conceptual similarity to cognitive load theory. By the end of this

section, the reader should have a sense of established research that is similar to mine

in software engineering and a high-level overview of cognitive load theory.

Others have attempted to improve programming practice in the past. Edsgar

Djikstra published the provocative Go To Statement Considered Harmful [33] in a

letter to the editor of Communications of the ACM in 1968. This paper, premised

with the assertion that the “the quality of programmers is a decreasing function of

4

the density of go to statements in the programs they produce” essentially helped

launch the conversation that “the way you write code matters” by arguing that one

particular tool in high level programming languages, the goto statement, made pro-

grams harder to understand. Djikstra continued refining these ideas and published

a set of notes which led to a book on Structured Programming [34]. Structured

Programming prescribed the use of control structures– such as if/else statements,

cases, and looping statements–instead of only variable assignment statements and

jumps to labeled sections. Structured Programming influenced the development of

new programming languages like Kernighan and Ritchie’s C Programming Language

[35], which incorporated control structures as the fundamental primitives of writing

code. Structured programming triggered the elaboration of programming paradigms

as diverse as imperative programming, procedural programming, and object-oriented

programming. Imperative programming simply arranges program statements in order

of execution, very similar to writing a task list. Procedural programming organizes

imperative code into subroutines, named groups of imperative statements that can

form a basis for abstraction and apply Parnas principle of information hiding [36].

Object-oriented programming defines systems in terms of message passing between

independent units that encapsulate data and the operations on that data called ob-

jects [37]. In a parallel track, Donald Knuth developed Literate Programming [38, 39].

Programmers who write in a “literate” style combine prose and narrative to elabo-

rate the function of the application. The author of a literate program writes with

readability and comprehensibility in mind as a direct consequence of the formulations

in accompanying text. Literate Programming has yet to penetrate the majority of

the programming zeitgeist, remaining a fairly niche research interest. Nevertheless,

many authors have experimented with it and reported enhanced clarity [40]. There

are many other paradigms of programming, as have been extensively collected and

5

classified by Van Roy [67]. All of these paradigms seek to apply a specific set of

constraints and models of interaction to computer programs to make it easier for

a programmer to reason about and implement their design. Some researchers have

looked at the potential cognitive elements of programming paradigms [41, ?], others

have looked at cognitive elements independently of programming paradigm [42], but

the discipline lacks a de facto standard for the evaluation of the cognitive impact of

programming paradigm.

Rather than measure complexity through the impact on human cognition directly,

Software metrics comprise effort by the software engineering research community to

quantify the results of the software process. The original, most cited software metric

is the Line of Code (LOC) and the analogous KLOC (thousands of lines of code). An

oft-maligned metric— that does not account for the internal complexity or structure

of a program— LOC has nonetheless remained common due to simplicity of measure-

ment. Attempts to provide more information about the inner working of a program

have led to the creation of metrics such as Halstead’s Software Science [9], McCabe’s

Cyclomatic Complexity [8], and Albrecht’s Function Points [10]. These approaches

have found limited success. Empirical studies have produced very little conclusive

evidence as to the efficacy of these metrics [43], with many equivocal examples [44].

Modern metrics research, however, is attempting to incorporate elements of cogni-

tive science into the art of understanding software. Wang’s study of the cognitive

complexity of software serves as a bridge for the metrics work into this world [11]

[12]. Wang develops a set of meta-cognitive models for the description and under-

standing of computer programs, then constructs a set of experiments that compare

and contrast the cognitive complexity of different constructs. The argument is that

the metrics generated through such analysis are more accurate descriptors of software

complexity than symbolic, structural, or functional complexity metrics.

6

Cognitive metrics for software scratches the surface of what cognitive science can

offer computer science and software engineering. Software maintainers spend more

time reading code than they do writing new code. Many developers who write new

code often find themselves working with unfamiliar technologies or in an unfamil-

iar domain. People commonly believe there are similarities between programming

and education, but no unifying link in theory has tied successful programming out-

comes to established educational theory. One such relevant theory is Cognitive Load

Theory [45], which informs the way educational designers seek to develop curricular

materials. Human Computer Interface (HCI) designers leverage it to provide better

user experiences [46, 47]. Nevertheless, programmers have not applied this work to-

wards actually changing the way they write code for other programmers. Software

engineering research has been focused on other areas.

Software Engineering literature of the early 1990s continued the work of the 1980s

in software processes and modeling, leading to the development of the Unified Model-

ing Language (UML) [48]] and the associated Rational Unified Process (RUP) [49]. In

1994, the Gang of Four published their seminal Design Patterns [22] catalog, a hybrid

design/architecture and implementation publication that inspired a rush of patterns

oriented research activity in the community, including implementation patterns [50],

testing patterns [20], enterprise application architecture patterns [51], language im-

plementation patterns [52], and others. In February 2001, a group of experienced and

well-respected software engineers published the Agile Manifesto [19]. A counterpoint

to RUP, agile software development emphasized less documentation, tools, and re-

peatable processes. Instead, it championed greater emphasis on relationship building

and collaboration. This approach quickly became popular with industry, especially

with the rise of web application development. Its emphasis on results effectively cap-

tured the spirit of the rise of the Internet and fast-paced nature of web development.

7

Consequently, an explosion of interest for effective ways of organizing and managing

agile software teams led to the development of models such as Extreme Programming

[31, 53], and Kanban [54].

Many of the forerunners of Agile were leading evolution in multiple areas of soft-

ware engineering. Andrew Hunt and Dave Thomas wrote The Pragmatic Programmer

[55], fleshing out the baseline principles of the Agile Manifesto into a programming

philosophy built on pragmatism. Kent Beck helped elaborate Extreme Programming

[31], codified best practice Implementation Patterns [50], and wrote the most popular

Java variant of the xUnit testing framework, JUnit, as part of his work in proselytizing

Test-Driven Development [20]. Martin Fowler developed a widely regarded Refactor-

ing patterns catalog [56] extending from Bill Opdike’s PhD thesis [57] to provide a

structured, behavior-preserving methodology for modifying existing code to promote

clarity and reuse. Robert C. Martin helped expound some basic principles that have

become the bedrock of SOLID object-oriented software development [58], including

the Single Responsibility Principle, the Interface Segregation Principle, and Depen-

dency Inversion alongside Barbara Liskov’s Substitution Principle [59] and Bertrand

Meyer’s Open/Closed Principle [60].

These industrial contributions have ironically transformed much of the software

engineering landscape—particularly in web and mobile software development, the

preeminent paradigms of the 21st century—at arguably a broader scale than academic

software engineering research. Recognition of this dichotomy between the research

emphasis and industrial literature has fueled the rise of the Software Craftsmanship

movement [32]. Software Craftsmanship espouses treating programming as a craft

more than a science or an engineering discipline. In such epistemology, dedicated

artisans construct the best software. Such artisans hone their craft through discipline,

practice, and apprenticeship/journeyman style interactions with masters.

8

One could see Software Craftsmanship as a reaction against and rejection of Soft-

ware Engineering. It eschews the emphasis on process, models, and up-front work to

build software systems. Alternately, one could argue that it represents a competing

school of thought. Much like Cubism and Expressionism were competing schools of

thought in 20th century painting, software craftsmanship and SWEBOK [61] [56]

based approaches may be seen as competing schools of thought within 21st century

software engineering. One can relate this to the difference shown in DeRemer and

Kron’s ”Programming-in-the large versus programming-in-the-small” [62]. Many soft-

ware craftsmen seek to apply cognitive science to improve their craft. Andy Hunt

wrote a book to help programmers “refactor their wetware” by applying concepts

from cognitive science [63]. They have yet to link cognitive science to writing code.

CLT is the link.

2.1 Establishing the link between Cognitive Load Theory and Software

Engineering through Software Craftsmanship

Before I dive into the conceptual overlap between software craftsmanship best

practices and CLT, it will be helpful to define the concepts individually. I begin by

outlining concepts from software craftsmanship, then defining concepts from CLT,

then describing their connection.

The Single Responsibility Principle states that “a class should have only one

reason to change.” [58] For example, the design of a vending machine class may

include methods to add money, vend a product, set the prices of individual products,

restock individual products, and refund money. If the currency of the machine has to

change, the implementation may need to be modified. If the product stocking needs to

support batches, the implementation may need to be modified. This design conflates

inventory management with price calculation. A Single Responsibility Principle-based

9

design would break apart the functionality such that the vending machine has an

inventory and a cost calculator. Application of the SRP tends to break larger objects

into smaller, more cohesive objects. This increased cohesion is reminiscent of the

cognitive concepts of chunking, essentially the SRP calls for smaller, independent

chunks. It also aligns with CLT guidelines of paring content down to essentials and

writing high coherent text for low-knowledge learners.

2.1.1 Open-Closed Principle

The Open-Closed Principle states that software entities should be open for exten-

sion but closed for modification [58]. This seemingly unachievable goal drives designs

towards simple abstractions that change rarely but can add behaviors to a system

through different implementations. For example, an online retailer may select the

right hello message to display on a landing page based on the country the customer

is in based on a Greeter class. If that class uses a hardcoded array, whenever that

retailer expands to a new country, the Greeter will have to change. If instead the de-

sign employs a STRATEGY for Greeting, new implementations can be added without

modifying old code. This also optimizes chunking to differentiate between abstraction

and implementation, which is reminiscent of the CLT guidelines of teaching system

components before teaching the whole process and teaching supporting knowledge

separate from procedure steps.

2.1.2 Newspaper Metaphor

The Newspaper Metaphor is described as a way of arranging code like the headlines

and sections of a newspaper, with headlines and headings that describe the content

to follow [18]. In this style of arrangement, a programmer tries to co-locate functions

with their usage such that the narrative flows from abstract to concrete. For example,

10

“In order to parse HTML, one reads from a string and tokenizes it. In order to read

from a string, one reads character by character into a buffer until reaching the null

terminator. In order to tokenize, one splits the string by a delimiter...” This most

directly relates to CLT in terms of sequencing. It is reminiscent of the CLT guideline

of giving learners control over pacing and managing cognitive load when pacing must

be instructionally controlled.

2.1.3 Design Patterns

Design Patterns emerged from Software Engineering adopting the approach of

Christopher Alexander [64] to describe different architectural patterns and applying

it to software. There are patterns for object-oriented analysis and design, implemen-

tation, software architectures, and many other areas of software engineering. Design

Patterns evince the CLT guideline of imposing Germane Cognitive Load to enhance

efficiency by helping learners automate new knowledge and skills, forming a special-

ized lexicon that can enable experienced and proficient practitioners to communicate

complex concepts quickly.

2.1.4 Intrinsic, Germane, and Extraneous Cognitive Load

Cognitive Load Theory often classifies load into three types: Intrinsic, germane,

and extraneous [5]. Intrinsic Cognitive Load is the basis of CLT, the irreducible com-

plexity of concepts. Intrinsic Cognitive Load derives as a function of the number

of distinct elements working memory needs to process and the interconnections be-

tween them [7]. CLT does not seek to eliminate intrinsic cognitive load as it cannot

be eliminated without obliterating the underlying concept. Instead, CLT seeks to

manage intrinsic cognitive load. Two strategies often employed to limit the intrinsic

cognitive load are sequencing and chunking [4]. Chunking takes similar elements and

11

groups them together, allowing the working memory to treat the numerous units as

a single unit for storage and retrieval. Sequencing sorts the elements in an ordering

that enables progression with minimal backtracking or cross-referencing. Germane

Cognitive Load is the cognitive load involved in activities that is actually in service

to the desired outcome. For example, doing different types of problems when learn-

ing equations to see how they apply in various contexts can increase the germane

cognitive load. Learning specific vocabularies such as Design Patterns to succinctly

communicate concepts also increases Germane Cognitive Load. Extraneous cognitive

load is caused by a sub-optimal arrangement or presentation of content demands more

working memory attention from things that are irrelevant. Redundant verbiage or dis-

tracting pictures can introduce extraneous cognitive load by shifting attention away

from the desired goal. A lot of CLT work seeks to manage intrinsic load, optimize

germane load, and reduce extraneous load as much as possible.

2.1.5 Split Attention Effect

Colloquially, split attention occurs when one is reading a passage and feels annoy-

ance when it instructs them to flip back or forward for more information [65]. It very

similar to the idea of the overhead involved in context switching when it comes to

concurrent thread management in software engineering. The Split-Attention Effect is

mitigated by integrating content to be self-descriptive and cohesive without having

to jump back and forth.

2.1.6 Expertise Reversal Effect

An important finding for instructional design is that many of the techniques ef-

fective to help novices acquire schemas have no effect or actually impede the un-

derstanding of experts [66]. As someone gains experience and builds the necessary

12

mental schemas, it’s often helpful to reduce the cognitive load management methods

used because they serve as substitutes for pre-built schemas for novices. In any study

examining CLT with respect to software, it’s helpful to consider if evidence of the

expertise reversal effect can be observed. For instance, LIterate Programming when

writing a compiler may be extremely helpful for someone unfamiliar with compiler

theory and design, but may actually impede the understanding of an expert who is

just trying to find the language’s grammar and doesn’t need a lesson in Context Free

Grammars in the comments.

2.1.7 Applied Example of the types of Cognitive Load in software

As an applied but simplistic example, consider the case of an electronic retailer.

Perhaps in an initial rapid prototype the retailer’s website offers some static Hyper-

Text Markup Language to greet a customer.

Figure 2.1: insert caption

The Intrinsic Cognitive Load of this markup includes an understanding of the

syntax and semantics of HTML, the ability to read the English language, and the

knowledge that there is another component referenced by a hyperlink that completes

the purchasing process. The Germane Cognitive Load includes some semantic under-

standing of the intent of the application–such as knowing that the 12345 corresponds

to a product identifier that is used by another page to trigger purchasing. The Extra-

13

neous Cognitive Load includes the lack of an ending close tag for the anchor- -.

Someone reading this document later may have difficulty understanding whether the

intent was to only make the word “buy” a hyperlink, or whether the intention was to

“buy this product.”

Suppose market research discovers that more purchases occur if the greeting is

warm and friendly. The product team asks the development team to change the

greeting to a formulation that has been shown to lead to more purchases, addressing

the customer as “Dear, dear customer.” The development team has design options.

They may implement the change by simply changing the text, as shown below:

Figure 2.2: insert caption

This simple change adds another word to the document, but has minimal effect

on the intrinsic, germane, or extraneous cognitive load. A comment has been added

to clarify why this changed.

Suppose further market research reveals that “Dear dear Customer” works well

for people who shop with their browser set to the Spanish language, but “Valued

Shopper” works better for others. The Intrinsic Cognitive Load of this application

will increase. Either different pages will need to be loaded by the HTTP server based

upon the customer’s location, or the markup will need to be updated in a way that

14

enables the greeting to be displayed dynamically. The development team may choose

the second option and generate the code below:

Figure 2.3: insert caption

Not only has the Intrinsic Cognitive Load of this application increased conceptu-

ally, but the Cognitive Load imposed by the code has increased dramatically as well. A

dynamic element has been introduced to the document through the use of Javascript,

which will replace the HTML with an id of “greeting” rendered text based on

the detected value of the language when the document is ready. The Germane Cog-

nitive Load now includes an understanding of Javascript language syntax, semantics,

15

and eventing model, localization issues of language, and the platform-specific nuances

of different browsers. The comment that was helpful in the static “simple” update

is now Extraneous Cognitive Load, because what is rendered is no longer just “Dear

dear Customer”, it may also be “Valued Shopper.” Future developers may question

whether the code is correct because the comment tells them it should do one thing,

but the code itself does another.

The Intrinsic Cognitive Load of the application cannot be reduced without chang-

ing its functionality. This Cognitive Load can be managed by sequencing and chunk-

ing. An enterprising developer may refactor the application as show below:

Figure 2.4: insert caption

16

Figure 2.5: insert caption

Figure 2.6: insert caption

Figure 2.7: insert caption

This refactoring introduces the concepts of sequencing and chunking. It adds Ger-

mane Cognitive Load by using JavaScript’s modules functionality, but the complexity

of the original HTML file is dramatically reduced as its bits are chunked across mul-

tiple files, meant to be read and understood sequentially. I propose the following

hypotheses as links between software craftsmanship practices and CLT:

17

• The Single Responsibility Principle is a technique that reduces Extraneous Cog-

nitive Load and manages the Intrinsic Cognitive Load of classes by promoting

smaller classes. In the above example, the single responsibility of the HTML

page is to invoke the greetCustomer function.

• The Open/Closed Principle helps beginners manage Germane Cognitive Load

by enabling consumers of classes to leverage existing components while avoiding

cognitive overload by abstracting away inner details. In the above example,

getUserPreferredLanguage is a default function whose implementation is closed

to modification, but communicates intention through its name.

• The Newspaper Metaphor is a technique for minimizing the Split Attention

Effect, reducing Extraneous Cognitive Load. In the above example, methods

are arranged according to their usage.

• Design Patterns form a higher-level vocabulary that increases Germane Cogni-

tive Load for intermediate/advanced developers, allowing richer conversations

with less distracting detail. In the above example, the COMMAND pattern is

used to convey that a function has a void return type and performs a side-effect.

• Smaller functions/methods with descriptive names align closely with Miller’s

Magic Number Seven Plus or Minus Two [58], allowing programmers to hold

more of a method’s functionality in their heads at once. This reduces con-

text switching and makes the overall component easier to understand. This

pattern scales. Small methods, small classes, small packages, small libraries,

small frameworks are more cognitively available for novices, enabling quicker,

less error-prone development. In the above example, none of the functions have

more than 7 lines.

18

2.2 Theory & Predictions

Cognitive Load Theory has shown measurable and repeatable results that have

influenced Instructional Design. Refactoring patterns are widely accepted for reduc-

ing technical debt and making code easier to understand and modify, but it is hard

to quantify this effect. In some software engineering companies, the process of peer

code review is used as a mechanism for quality control and to manage technical debt.

In code review discussions, the application of certain Refactoring techniques or the

order in which they are applied can give rise to disagreements that they are simply

about style versus substance. Someone without previous background in patterns lit-

erature may argue that the introduction of a pattern makes code more complicated.

Sometimes one with such a background may argue that the wrong pattern is being

applied. Decision points about whether a block of code should become a separate

method or class, the names of identifiers, the control structures leveraged, and other

points of the software design and implementation can become a horse trading affair

where software engineers try to persuade each other based on appeals to authority,

tribal knowledge, and individual preference. Cognitive Load Theory offers a struc-

tured approach for measuring and quantifying the technical debt of a software project,

and a conceptual framework to guide these discussions. Software teams can apply a

practice of periodically reviewing certain classes in their code-base and subjectively

reporting the estimated cognitive load. Such a practice would allow, over time, to

use the measured change in reported cognitive load as a metric to include in the

calculation of the technical debt of a project.

Additionally, CLT guidelines can change the way we think about documenting

and understanding code. For instance, an application of the Modality Effect suggests

that embedding UML diagrams directly in source code that involves spatial reason-

19

ing, and providing audio narration could improve the comprehensibility of the code.

Integrated Developer Environments such as Eclipse Juno, IntelliJ IDEA 2014 and

Visual Studio 2010 don’t support this type of experience natively. The guidelines

of worked examples and self-explanations can provide a cognitive basis for the effi-

cacy of Test/Behavior Driven Development. Guidelines related to separating system

components from processes and supporting knowledge from procedure steps can in-

form arguments behind the viability of Interface Oriented Design [67] and the choices

behind particular abstractions.

The complexity of software most often becomes an issue when the code has to

change. The primary drivers of change in software are finding a defect or desiring a

new feature. When the code must be changed, there is a risk that previous correct

behavior may become incorrect, or that the performance profile–in terms of CPU

utilization, memory usage, IO, or other factors– may change in a dramatic way that

affects the availability of the system. This is when the technical debt associated with

the system may cause the necessary change to take hours, weeks, or more. If Cog-

nitive Load Theory can quantify the technical debt a system experiences effectively,

one would expect to find that systems with high technical debt impose high cognitive

load on their maintainers and users. These high technical debt systems would contain

more design flaws, more implementation bugs, and changes to these systems would

take longer to implement and validate, hence being more likely to introduce regres-

sions from desired behavior. Conversely, systems with lower technical debt should

impose lower cognitive load. The number of design flaws and implementation de-

fects should be lower, the average time to resolve issues should be less, and changes

should introduce fewer regressions. Consequently, code that is refactored to manage

its cognitive load more effectively should be code where one can more easily fix an

outstanding bug, the attempt at fixing should introduce less regressions on average,

20

and the engineers who attempt the fix should report less perceived cognitive load from

the code they read and modify. A useful experiment would look at an existing piece of

software with well-defined functionality and a known bug, create a refactored version

that maintains the presence of the bug but more effectively manages the cognitive

load, then verify that it is easier to fix the refactored version and that engineers feel

less cognitive load while trying.

2.3 Research Question: Can Cognitive Load Theory provide empirical evidence

and a conceptual framework for the efficacy of Refactoring?

The non-directional null-hypotheses to test, in mathematical terms, are:

1. Time of completion (control) = Time of completion (refactored)

2. Perceived Cognitive Load (control) = Perceived Cognitive Load (refactored)

3. Average defects introduced (control) = average defects introduced (refactored)

These hypotheses should be testable with a 95% (p <.05) confidence level and

desired power of 80% (π=0.80).

2.3.1 Why will this be meaningful?

One would expect to find the code refactored to manage cognitive load requires

less average time to fix defects and introduces less regressions while trying. This will

enable the research community to explore further interventions and evaluate questions

such as “do some principles have a higher impact when applied than others?”, “is the

effect of the principles in any way tied to programming language?”, and “could results

be affected familiarity with program domain?” Additionally, showing the efficacy of

Cognitive Load Theory’s application to software engineering creates a wealth of op-

portunities to explore its recommendations for visualizations, organization of project

21

documentation, and personalized tooling support for software engineer of various skill

levels.

2.3.2 What could go wrong?

It is possible that authors wildly misrepresent the effects of the programming

heuristics. Consequently, divergent results upon measurement may be unlike previ-

ous Cognitive Load experiments. Perhaps even with classical techniques of measuring

Cognitive Load one will be unable to find a relationship between programming per-

formance and Cognitive Load optimization techniques. This would suggest CLT is

not as strong a fit for software as the original hypotheses suppose. Additionally,

Cognitive Load Theory states the principle of the Expertise Reversal Effect, which

says that some practices that highly benefit novices will flummox experts and vice-

versa. A robust experiment should identify instances of this by targeting an equal

mix of novice and expert participants. One would expect that content increases Ger-

mane Cognitive Load, such as the lexicon of Design Patterns, would improve the

performance of intermediate and proficient practitioners but may induce cognitive

overload—and hence have a negative impact—on novice performance. Alternately,

partitioning methods and classes to minimize the risk of cognitive overload may be

unnecessary for an expert. Such efforts may improve novice performance, but inhibit

the analysis of an expert who can “hold more of the code in their head.”

2.3.3 How can one measure the Cognitive Load of code?

The Cognitive Load Theory literature describes multiple different options for mea-

suring cognitive load. Paas et al provide a useful literature review [68] that surveys

analytical and empirical methods such as subjective rating, physiological response,

and concurrent-task assessment. In separate work, Paas et al compared subjective

22

ratings with psychophysiological response readings and found that subjective rating

is reliable and sensitive enough to be useful without the significant cost and imple-

mentation barriers that come with more technological measurement [69]. Brunken

included direct forms of cognitive load measurement such as EEG [70] and found

that a dual-task method may work well for multimedia. Given that the introduction

and measurement of CLT are new when it comes to software, I chose a subjective

rating scale where participants numerically rank items based on perceived difficulty–

commonly known as a 7-point Likert Scale [93]– to measure the induced cognitive

load of code snippets.

With these conditions in mind, the next section presents the experiment that

tested these hypotheses.

23

Chapter 3

OVERVIEW OF PRESENT EXPERIMENT

In this section I detail why certain participants are selected, which piece of software

is used for the trial and why it is picked, the experimental procedure and how it relates

to the research questions driving this work. At the end of this section, the reader

should have the necessary background to understand the experiment.

3.1 Participants

In this study, I sought to achieve meaningful results with a 95% confidence in-

terval and 80% power looking at the differences between real production code with

refactoring supported by cognitive load theory principles applied and code without.

I wanted to explore the difference in mean time to fix a bug, regressions introduced,

and perceived cognitive load between experienced programmers and novices. Using

the G*Power application [73], I computed a minimal sample size of 185 participants.

For ease of calculation, I got 188.

The development practice of those who have multiple years of experience is differ-

ent from those without, as is commonly seen in expert/novice studies in areas such

as chess [71], circuit analysis[72], and nursing [73]. Studies in programming have ex-

plored expert schema generation and ways of reading code [74, 44, 75]. Many of these

studies have very basic modeling of programming expertise, classifying participants

as experts or novices. Models such as the five stage Dreyfus Model [76] have not

been widely applied in the research literature. Nevertheless, companies often hire

programmers with criterion based on years of experience, despite the lack of a strong

research body of evidence that shows correlation between expertise and years pro-

24

gramming. For the purposes of this study, I chose to segment years of programming

experience based on common industry qualifications: <5 years for novices, 5+ years

for experienced.

3.2 Materials

3.2.1 Software Chosen - Joda Time

For this study, I used the Joda Time date/time library. Joda is a popular open-

source library used in thousands of projects for date/time manipulation for Java.

Java already has a Date/Calendar library built into the language designed for these

types of operations. However, many developers within the Java community were

dissatisfied with the complexity of the interface Date/Calendar provides for achiev-

ing operations such as Date/Time arithmetic, time zone conversion, and formatting

dates to standard formats such as ISO8601. Because of this complexity–which this

research can show is a measurable difference in the cognitive load imposed by these

two libraries– Joda Time has become so popular that the author of the library was

asked to completely re-write date/time handling for Java 8.

3.2.2 Why Joda Time?

1. Joda Time seeks to reduce the complexity of an existing interface, meaning

that it has made an effort to manage the intrinsic cognitive load of date/time

manipulation for users.

2. Joda Time has a very large user base and is a high impact project within

the Java community. Joda Time sits in the dependency tree of many popular

software packages such as Spring, the Lift web application framework, Hibernate

annotations, and many, many more. As such, this is not a contrived exercise

25

dreamed up by a graduate student in a lab to show an effect. This is real code,

battle-tested and used by millions.

3. Joda Time is written in Java. Java and C++ are the most well-known program-

ming languages in the community. Java is taught in many college curriculums;

finding familiar programmers is less difficult than other languages.

4. Joda Time solves a very general problem–date & time manipulation. Most

languages have date libraries for common operations like arithmetic, format-

ting, or timezone conversion. Good and usable libraries provide broad, us-

able abstractions for complicated functionality. Date & Time manipulation

is very complicated, often causing bugs even in major professional software

engineering environments. Programmers across different software engineering

domains—whether they build web applications, defense contracting products,

or video games—are likely to be able to “grok” it. While esoteric details of

handling locale differences and nanoseconds may themselves be complex, the

generality of the problem makes it more suitable for development by engineers

with various backgrounds than a task such as modifying a Machine Learning

library like Weka.

3.2.3 What experimental intervention did I make to Joda-time?

I used two versions of Joda Time. The control version is unmodified source from

GitHub, forked from the master branch on July 24th, 2015. The experimental version

applies Refactoring to the control version aligning with precepts of Cognitive Load

Theory such that:

• Variable identifiers are renamed for clarity

26

– Clean Code: Avoid mental mappings→ CLT: Integrate Explanatory Text

Close to Related Visuals on Pages and Screens to Avoid Split Attention

• Each method has no more than 7+-2 lines

– Clean Code : functions do no more than one thing → CLT: Write High

Coherent Texts for Low Knowledge Readers

• Methods are arranged according to their usage

– Clean Code : Newspaper Metaphor → CLT : Display Worked Examples

and Completion Problems in Ways That Minimize Extraneous Cognitive

Load

• Each class has no more than 7+-2 methods

– Clean Code : Classes do no more than one thing → CLT: Write High

3.2.4 What change did the participants have to make?

Joda Time at this commit contained a bug in its parsing logic for ISO8601 dates.

The ISO8601 standard is common enough to be implemented in many different pro-

gramming languages and be a standard convention for transmitting dates in dis-

tributed systems. This makes the bug broadly comprehensible, have mass applicabil-

ity, and a good candidate for investigation.

3.2.5 Bug: ISO8601 Years

The “devil in the detail” is all of the “edge” cases where bugs happen. One of the

devilish details is the existence of a large, amorphous, ever-changing set of formats

describing a date. The International Standards Organization attempted to ameliorate

this with ISO8601[82], which defines a canonical format for the interchange of dates

27

and times across locales. One of the quirks of the standard is that the published

format is YYYY-MM-DD, however, the standard allows for more than 4-digit years

in cases where sender and receiver have agreed upon extra digits by prepending with

a + or - [±YYYYY]. Joda Time did not originally account for this. This led to the

filing of the bug report:

Figure 3.1: insert caption

Hari Shankar explored the depths of the code, identified an issue, and made a fix.

He did not report how long it took to find the bug, nor how difficult it was to come up

with a solution. When I first found this issue, it was still open. In October of 2015,

Steven Colebourne (primary author/maintainer of the library) merged in Shankar’s

fix.

28

Figure 3.2: Shankar’s Fix

29

3.2.6 Analysis of Accepted Solution

The accepted solution follows a common maintenance programmer practice: change

as little code as possible and duplicate where necessary and with slight tweaks to

achieve desired behavior. It is not exactly but similar in vein to “Programming By

Difference.” It is a conservative approach that tends to be favored when code is in

obsolescence, has a large number of consumers, or is otherwise hard to change.

“Other reasons” that code can be hard to change include a lack of confidence in

correct behavior, or difficulty in understanding algorithms and data structures written

by someone else. The commit that introduced the fix included unit test cases that

manifest the bug (though notably only try 5 digit years, perhaps not fully exercising

failure modes), suggesting the maintainer understood the code enough to augment

the existing test suite, a software best practice. The original code was not written

solely by Stephen Colebourne. Attribution information in the comments suggests it

was a collaborative effort between Colebourne, Brian S. O’Neill, and Fredrik Borgh.

It’s possible this had an effect on the aggressiveness of the fix.

Using SonarQube 5.4 for analysis, I found that the DateTimeFormatterBuilder

alone had 1600 LoC. 2625 total lines (including comments) with 162 issues found via

static source analysis, with 2.3% duplications, estimated to take 2.5 days to fix. It

had a Cyclomatic Complexity score of 550, the highest in the library.

When gathering statistics of the library with the “Run Tests with Coverage” op-

tion of IDEA IntelliJ, Joda Time exhibits an impressing 98% class/91% line/90%

method coverage. Such a high level of coverage potentially provides developers the

option to experiment with more drastic structural Refactoring and verify existing be-

havior, but time and other issues may not always make such re-architecture possible.

For the purposes of this experiment, I hold the state of JodaTime as reflected in

30

Git commit on August 2nd 2015 as the “control” group, not including the given fix.

I use the provided fix as the “gold standard”, as it was accepted by the core library

contributor. I then ask participants to attempt to fix the bug following a short tutorial

on the ISO8601 standard and the Joda Time library. I follow a 2x2 factorial design

where I account for novice/expert and control/experimental measuring debugging

time, number of defects introduced as detected by failing unit tests, and perceived

cognitive load as reported on the Likert Scale. Non-software related factors that

potentially introduce error in measurement include time of day, environmental factors

in the deviation from “normal programming place” (office, coffee shop, home, et

cetera) versus “clean room”, and participant mood/focus/mental factors. I treat

non-software related factors as nuisance variables.

3.3 Experimental Environment

To run the study, I developed a lab machine with multiple Integrated Development

Environments to suit the needs of Java programmers: Eclipse, IDEA IntelliJ, Oracle

NetBeans, Sublime Text Editor, Vim, and Emacs. The lab machine included all

necessary software, an Ubuntu 11.10 base OS running Java Development Kit 8 update

21, Git, installed versions of Eclipse Neon, IntelliJ IDEA 14, NetBeans 8.2, Sublime

Text 3, VIM 7.1, and emacs 24.2.

This was a conscious concession to permit the introduction of another nuisance

variable—IDE familiarity—into the project.

3.3.1 Aside: The IDE effect

Java developers have a lot of flexibility in the toolchain they use, limiting to

one particular environment could artificially narrow the participant pool or influence

the results. For example, an experienced Eclipse developer may have a significantly

31

impaired code navigability and debugging experience in Vim, or an Emacs guru could

spend valuable code investigation time instead learning the graphical user interface

of IntelliJ. Making one tool mandatory could significantly deviate the sample from

the programmer population, discouraging some from involvement and hamstringing

the rest. I wanted to simulate the field experience of programming as closely as

possible, giving participants leverage to integrate prior knowledge and work with

code in their naturally preferred workflows. The trade-off is that I did observe effects

where toolchain differences had an effect on the study data, including load/processing

times and perspective switches of Eclipse and a stability issue with NetBeans.

The in-person approach worked effectively to pilot the study and normalize the

workflow and data collection. The only problem was the time-intensiveness of the

process. Since the target number of participants was 185, I needed a way of scaling

out the study such that participants could independently and in isolation do the

exercise in parallel. Consequently, I replicated the lab machine setup in a virtual

machine image using Oracle VirtualBox 4.0. I uploaded this virtual machine image

onto my website, then wrote a script with instructions sent via email to participants

who registered using the online questionnaire. The virtual machine was configured to

automatically record the screen and capture audio, creating a very similar experience

to the in-person session. Participants would securely send me the captured video

file and the filled out Likert Scale for the code listing, along with any notes that

corresponded to their impressions after a debrief prompt. This development enabled

my research to reach for more participants than it may otherwise have; it seems an

ideal way to make a study like this capable of reaching a large number of programmers

from different backgrounds all over the world.

32

3.3.2 Cognitive Load measurement - Likert Scale

I give participants an annotated listing (included in appendices) that applies a

7-point Likert Scale to the code listing in order to analyze perceived Cognitive Load

according to common techniques.

Aside: Likert Scale construction

Likert Scales are not commonly applied to code listings. Figuring out how to do so

is a point of experimental design. It is an expansive design space, abundant with

options. Naively, one may consider applying a scale at points such as every state-

ment/expression, every line of code, every function/method, every class definition, at

package level, or even at the bundled executable/library level. I’ll discuss some of the

strengths and shortcomings of this approach.

Likert Scale: every expression/statement

A Likert Scale on every single expression or statement offers perhaps the most gran-

ular sensor for how difficult code is to understand. It’s also the most “cost pro-

hibitive” in measurement. Any code whose full functionality that does more com-

putation/evaluation than simple algorithms such as sum/max/min can become in-

credibly difficult both to instrument this way and for participants to respond. For

my study, I chose “real-life production code” precisely to avoid generalized infer-

ence of programmer thought process from “toy examples”, a common critique of

research into the cognitive aspects of software. As measured by SonarQube, the

DateTimeFormatterBuilder alone has 2625 total lines, and multiple expressions or

statements can be in a single line. Giving participants 5000 elements to rank assuredly

biases them towards Respondent Fatigue. As this is cutting-edge research intended

33

to establish the viability of this approach, it is absolutely imperative to minimize

corruption of the data based on Respondent Fatigue. I can ameliorate this concern

by setting some axioms of things that are “easy to understand”—where one would

expect the average participant to respond 1 on a 1-7 least difficult/most difficult scale.

3.3.3 Minimal Cognitive Load of expressions axioms

• Declaration of a variable (e.g. int x;)

• Assignment of a value to a variable (e.g. int x = 2;)

• Unary and Binary mathematical operations (e.g. x++, x + y, x mod y)

These axioms are challengeable. For instance, the usage of a type in a variable dec-

laration is programming language dependent. There may be measurable differences

in simplicity of understanding declarations based on the inherent type systems of

the language. The way that such affects comprehensibility may be unexpected. Per-

haps in a typeless language such as Assembly, or a language that allow anonymous

types/”Duck Typing” such as Javascript, var x = 4 causes respondents less Cognitive

Load than int x = 4. Conversely, perhaps the Germane Cognitive Load induced by

the assumptions of types such as “an Integer in Java must be a whole number be-

tween -231 to 231-1” makes the second statement easier to understand. Both of these

conditions may actually be determined by the target programmer’s prior experience

with programming and languages.

For another example, bit shifting of whole numeric values can be succinctly de-

scribed as unary/binary mathematics operations, but that may underestimate the

cognitive complexity a programmer has to compute to understand what is happen-

ing. This comes up in my study in a very concrete way, as the computation of year

values during the parsing step contains expressions that befuddled many participants.

34

Figure 3.3: insert caption

This computation relies on a traditional programmer idiom from the assembly

days, that i*10 = (i<<3) + (i<<1) This shortcut is not documented in the code

itself and is not one high-level application developers and other software engineers

encounter on a daily basis. Every participant that encountered the line during in-

person trials reported feeling uncomfortable with it. Some took the time to prove to

themselves that the formula worked, many took it as given. Surely this line is not

equivalent in cognitive complexity to a simple variable assignment. In these cases,

I can compute a metric using Halstead’s software metrics or Mira’s Modified Cog-

nitive Complexity Measure [77], but none of these metrics could quite capture the

Cognitive Load of a prior knowledge lookup from a well-known programmer vocabu-

lary pattern-matching schema. In principle, capturing the subjective Cognitive Load

experienced by programmers encountering this line in production code could inform

researchers more about the average conceptual vocabulary of programming than other

mechanisms.

3.3.4 Likert Scale: line-by-line

A Likert Scale on every single line of code is slightly less expansive than expres-

sion/statement, but not by much. Respondent Fatigue is still an overriding concern.

The axioms can be expanded further to include line specific concepts.

3.3.5 Minimal Cognitive Load of lines axioms

• Return statements (e.g. return x + y;)

35

• Comments (e.g. // Next character must be a digit)

3.3.6 Likert Scale: blocks/scopes

This was ultimately the approach I chose to have participants respond to. Func-

tions/Methods, classes, packages—all of these artifacts are essentially programming

language conveniences to define scope at different levels of abstraction. This scope

management maps very cleanly to Cognitive Load Theory’s concepts of Chunking

and Sequencing. Code blocks form lexical and conceptual closures where program-

mers can partition their understanding of the global state of the program to manage-

ment pieces. As there fewer than 100 blocks to be analyzed, I avoid the problem of

Responder Fatigue but can still capture valuable granular data.

3.3.7 Minimal cognitive load of blocks/scopes axioms

• Getters (e.g. public int getCurrentPosition() { return currentPosition};

)

• Setters (e.g. public void setPosition(final int position) { this.position

= position};)

3.3.8 Open Question: How do we measure code flow cognitive complexity?

Likert Scales at the block level get me closer, but still don’t quite capture all of the

complexity programmers encounter when understanding code. For an applied exam-

ple, I can examine the code flow of the DateTimeFormatter. The DateTimeFormatter

uses an InternalParser,which is implemented by a static abstract class NumberFormatter

inside of DateTimeFormatterBuilder. This NumberFormatter is a nested class that

serves as the root of an inheritance hierarchy, for classes that include UnpaddedNumber,

PaddedNumber, and FixedNumber. Many participants who provided feedback about

36

the design in the study expressed confusion and incredulity, some expressed outright

contempt as they struggled to navigate between classes and trace control flow. This

type of activity is simple to observe but difficult to capture quantitatively, and the

self-reported Cognitive Load of block of code may not be able to tell us about the

cognitive complexity added by interactions between the blocks. This remains an ac-

tive area of potential innovation in study design and measurement for subsequent

research. As a general guideline, software designers should avoid deep inheritance

hierarchies or long method chains where the number of jumps in control flow begins

to approach human short-term memory limits.

The full Likert scale instrument for measuring cognitive load can be found in the

appendices, here I’ll show an example question for maximum clarity:

The instrument presents some code–a method of a class– with a 7 point scale

where respondents can rank its complexity. For consistency and simplicity of data

analysis, in my study this same scale is repeated for every question, only the code

changes.

37

Figure 3.4: Date Time Formatter

In this section I have detailed the rationales for criterion I used to select partici-

pants, the software library I used and how I modified it for the experimental purpose,

the environment developed to conduct the experiment, and the construction of the

measurement instrument for cognitive load. In the next section, I’ll detail the execu-

38

tion of the study.

39

Chapter 4

METHOD

In the previous section I established that I provided an overview of the experi-

ment I would run to explore a link between software refactoring and its corresponding

concepts in Cognitive Load Theory. I proposed this through a classical CLT experi-

mental design: run a 2x2 Factorial experiment split between novices and experienced

software engineers for a control and refactored version of the JodaTime Java library

trying to fix a bug and measuring time to complete, regressions introduced, and

perceived cognitive load. In this section, I detail how I did so. Participants

I solicited participants through an online questionnaire. This questionnaire (in-

cluded in the appendices) was simply for intake screening and validated eligibility per

compliance with the IRB requirements of the study and prerequisite knowledge. This

questionnaire was distributed through college professor classrooms, company mailing

lists, developer bulletin-boards, and online advertising. I contacted qualifying partic-

ipants after assigning them to 1 of 4 blocks based on their responses (Novice/Control,

Novice/Experimental, Expert/Control, Expert/Experimental), assigning them a ran-

domized identifier, and discarding non-essential personal information to obtain their

informed consent. I then scheduled a 1 hour session for conducting the study in per-

son for local participants and sent a link to a virtual machine lab environment for

remote participants.

4.1 Materials Design

I developed the experimental refactored version of Joda Time relying heavily on

Refactoring patterns while applying the CLT principles of sequencing, chunking, re-

40

moving redundancy, and introducing germane cognitive load through the direct usage

of Design Patterns. The exact same behavior was maintained, while new classes

were added using SPROUT CLASS, new methods were added using EXTRACT

METHOD, and variables were renamed and re-ordered for clarity. Afterwards, I

ran SonarQube 5.4’s code analysis for metrics to compare their complexity using

traditional software engineering tools. From a pure complexity metrics perspective,

DateTimeFormatterBuilder went from a control complexity score of 550 to 531 in

the refactored. The complexity per function dropped from 3.5 from to 3.4. The

number of lines of code dropped by 58. The number of duplications dropped from

2.3% to 0.7%. DateTimeFormatter showed a slightly more pronounced effect. The

complexity score dropped from 98 to 64. The complexity per function went from 2.5

to 1.7. The number of lines of code dropped by 110. The 2.9% duplications dropped

to 0. I’ve included the full elaboration of the set of transformations in the appendices.

4.2 Intervention, Measures, and Procedure

Participants reviewed a short tutorial on ISO8601 and debugging in their preferred

development environment before commencing the timed study. Participants had the

opportunity to ask clarifying questions and take notes before they started exploring

the code. When ready, they began a 1-hour timed session where they could explore

and modify code while trying to fix the bug. When they ran the tests to verify

a fix, I took note of failing tests as a measure of regressions introduced. When

the participants either fixed the bug or an hour passed, the session ended and I

recorded the total elapsed time to the nearest minute. After the session was complete,

participants received a survey via e-mail with 7-point Likert Scales with questions

where they answered “how hard is this code to understand? (1 = very easy, 7 = very

hard)” for the code they investigated.

41

Chapter 5

RESULTS

5.1 Mean Response Time for participants who fixed the bug

I ran a 2x2 factorial ANOVA using SPSS for the response time amongst successful

participants and recorded the following results:

Table 5.1: Mean Response Time of fixing bug

42

Table 5.2: Test of Between Subjects Effects

Figure 5.1: Estimated Marginal Means of Time

The data shows strongly that the main effect of Refactoring according to CLT

principles causes a statistically significant difference in mean time to resolution for

fixing a bug at α=.05. Hence we reject the null hypothesis that the mean time to

resolution is equal between the cases.

43

5.2 Mean Regressions for those who did not fix the bug

I ran a 2x2 factorial ANOVA using SPSS for the regression rate amongst partici-

pants who did not fix the bug and recorded the following results:

Table 5.3: Mean Response Time of fixing bug

Table 5.4: Test of Between Subjects Effects

44

Figure 5.2: Estimated Marginal Means of Regressions

From this data we can observe that there are statistically significant main effects

for both expertise and the effect of refactoring, with no interaction effect. Thus, we

can reject the null hypothesis that the regression rate is equal between the control

code and the refactored code.

5.3 Perceived Cognitive Load

I analyzed the perceived cognitive load by comparing the mean, median, and mode

across the control and refactored conditions and examining the differences between

overlapping questions. For the refactored condition, the average perceived cognitive

load was 3.38, the median was 3, and the mode was 2. Amongst novices, the mean

was 3.68, the median was 4, and the mode was 2. Amongst experienced, the mean was

3.08, the median was 3, and the mode was 2. For the control condition, the average

perceived cognitive load was 3.73, the median was 3, and the mode was 3. Amongst

45

novices, the mean was 4.06, the median was 3.5, and the mode was 3. Amongst

experienced, the mean was 3.39, the median was 3, and the mode was 1.

The number of questions asked in the survey differed between the treatments,

which I’ll return to in limitations. There was encountered code that remained un-

changed between the two treatments, so exploring the reported perceived cognitive

load between them may shed light on the total load imposed by the code base. If the

average perceived load is similar, that suggests that programmers partition off the

effects of the whole architecture and analyze methods individually. If it is not, that

raises the question of whether the perceived cognitive load is influenced by the code

around it. For the questions with overlap, the median and mode perceived cognitive

load were the same in both the experimental and the control conditions. This suggests

that the perceived cognitive load of methods can be reliably measured independent

of surrounding context.

5.4 Discusion

i. Time of completion (control) = Time of completion (experiment)

ii. Perceived Cognitive Load (control) = Perceived Cognitive Load (experiment)

iii. Average defects introduced (control) = average defects introduced (experiment)

Based on the preceding results, I can summarize that experience matters in solving

a complex problem, as more experts fixed the bug than novices. It required them less

time and fewer mistakes on average. But the effect of managing Cognitive Load

in code via Refactoring enhances the performance of both. The time of completion

and average defects introduced are not equal @ p <.05. The average and median of

the perceived cognitive load across the 16 experimental questions and the 10 control

questions are similar, but the experienced cognitive load in the experimental condition

46

is often smaller. The control case had 11 questions, the experimental case had 20

(the refactored code was broken out into smaller chunks, so took more blocks to

encompass). Some of the code in the questions between the two was the same, much

was different. The average cognitive load reported in the code that was the same

was approximately equal. This coincides with the theory that Refactoring manages

Germane Cognitive Load and removes Extraneous Cognitive Load but does not reduce

Intrinsic Cognitive Load. That is usually done by re-engineering. I did not find

evidence of the Expertise Reversal Effect when reducing method and class size to

more granularly partition out functionality amongst methods and classes. I did not

find evidence that the use of Design Patterns terminology applied Germane Cognitive

Load to the problem solving process–some experienced engineers self-reported not

knowing what a STRATEGY is for the DateTimeParsingStrategy, others felt it was

misapplied in this context. More work is needed to identify programmer familiarity

with Design Patterns and identify their effect on cognitive load as a function of

familiarity.

47

Chapter 6

LIMITATIONS

For the purposes of selecting programmer populations and sorting by experience,

I used a conventional industry classification of years of experience [78] as barometer

of expertise. This is widely panned in popular literature [79] and not very well es-

tablished in the research literature. Many studies are completed with self-selected

experts [80] or use distinctions between number of courses taken and skill level [81].

After this study began, new tools that gamify programming such as HackerRank and

CodeFights emerged that provide more a more granular analysis of expertise than

years of experience. Such tools, if they measure skill and expertise more distinctly,

may be better to use in subsequent studies to target experts and novices. Without

using such tools, it would be helpful to calibrate participants with 1-2 practice prob-

lems before conducting the study and having a panel of experts review their responses

to more accurately assign them.

The survey used to measure the perceived cognitive load contained the same lan-

guage between the experimental and control conditions, but not the same number of

questions. It is impossible to rule out that the longer refactored survey had results

impacted by respondent fatigue. Although its mean cognitive load was still computed

to be lower than the control, in future studies the number of questions should be held

constant across both.

48

Chapter 7

IMPLICATIONS

Finding that the main effect was statistically significant for the Refactoring ac-

cording to CLT principles but expertise was not for mean time to resolution of the bug

was provocative. It suggests that fears that the Expertise Reversal Effect may make

the code easier to read only for novices are as yet unsubstantiated. Finding that the

perceived cognitive load of overlapping code snippets was similar for both the con-

trol and refactored case suggests that CLT may be reliable measure for the technical

debt of a software project. Reliability and validity are two important attributes of

useful conceptual frameworks and robust metrics, cognitive load as it relates to code

may have both to offer the software engineering community. Showing that there is

a statistically significant effect for refactored code that adheres to the principles of

Cognitive Load Theory introduces new opportunities for the application of CLT to

software engineering tooling. Taking into account the Modality Effect when develop-

ing documentation to describe a system or constructing tooling to create systems may

dramatically affect the way we think about software visualization and implementa-

tion. Cognitive Load Theory itself may be informed by software engineering concepts

for designing modules/interconnected systems. The principles of Information Hiding,

Encapsulation, and resource independence inherent in Service Oriented Architectures

may impact the way Instructional Designers organize blocks of content.

49

Chapter 8

FUTURE DIRECTIONS

The measurement of Cognitive Load in the code was collected via a follow-up

survey with Likert Scale on the blocks of code that were actively debugged and

engaged. There is a possibility that the perceived ex post facto differs from the load

experienced at the time. It would be useful to devise an IDE plugin or some kind

of instrument that could get participant feedback in real-time. There may also be

interesting results derived through the use of some biometric technologies such as eye

tracking, EEG, or fMRI.

This study focused as much as possible on testing the validity of its hypotheses

with “real world code.” The JodaTime library is at times arcane, complex, and has

years of accrued complexity that many participants remarked on throughout the

study. There are multiple ways it would be helpful to reproduce these results with

different libraries. For one, there may be so much accumulated cognitive load in a large

library that looking for smaller libraries with defined problem spaces like JavaPoet

may be helpful. Attempting on general purpose code that works in different problem

domains such as the Apache Tomcat web application server or the OpenJDK may

serve as validation for generality or find specific domains where managing cognitive

load produces novel results.

Finally, it’s often argued that programming languages themselves have differences

in “expressivity” [82] in a way that suggests the intrinsic cognitive load may vary

between languages such as Java, LISP, and Python. It would be worthwhile to inves-

tigate whether the same techniques yield similar results across languages, or whether

the effects are different and language-dependent. Moreover, many of the techniques

50

we applied were harvested from Refactoring catalogs that had discovered analogues

to Cognitive Load Theory based from the Object-Oriented Programming paradigm.

It’s often argued by practitioners that Functional Programming is more cognitively

available, though the pattern literature for FP was not as voluminous when the study

began. It would be helpful to have a deeper investigation of the links between func-

tional programming and Cognitive Load Theory.

The measurement of Cognitive Load in code remains an open area of explo-

ration. In this study, I chose to measure based on blocks of cohesive code at the

method/function level. It is an open question how to quantify and explore the cogni-

tive load imposed by an entire class as “something more than the sum of the cognitive

load of its methods.” The relationship between classes, their usage, and how that af-

fects the aggregated Cognitive Load of a component is also worth exploring.

Finally, as systems move from a co-located in the same address space model to-

wards distributed systems/service-oriented architectures, additional complexity is in-

troduced with respect to consistency, availability, and partition tolerance [83]. This

complexity is often addressed through tactics that include retrying in case of network

failures, caching, and consensus-based algorithms, all of which impose additional cog-

nitive load. As software becomes increasingly complex and responsible for more of

the important work of humanity–such as autonomous vehicles and intelligent personal

assistants– understanding development practices to make software easy to understand

and fix defects in becomes ever more vitally important. Cognitive Load Theory offers

a useful set of principles that have already been applied in instructional design, this

work suggests it can be useful in software engineering and may help us “escape the

tar pit.”

51

References

[1] L. Briand, “Embracing the Engineering Side of Software Engineering,”
IEEE Software, vol. 29, no. 4, p. 96, Jul. 2012. [Online]. Available:
http://dx.doi.org/10.1109/ms.2012.86

[2] P. Johnson, M. Ekstedt, and I. Jacobson, “Where’s the Theory for Software
Engineering?” IEEE Software, vol. 29, no. 5, p. 96, Sep. 2012. [Online].
Available: http://dx.doi.org/10.1109/ms.2012.127

[3] I. Jacobson and I. Spence, “Why We Need a Theory for Software
Engineering,” Oct. 2009. [Online]. Available: http://www.drdobbs.com/
architecture-and-design/why-we-need-a-theory-for-software-engine/220300840

[4] J. Sweller, “Cognitive Load During Problem Solving: Effects on Learning,”
Cognitive Science, vol. 12, no. 2, pp. 257–285, Apr. 1988. [Online]. Available:
http://dx.doi.org/10.1207/s15516709cog1202 4

[5] J. Sweller and P. Chandler, “Evidence for cognitive load theory,” Cognition and
instruction, vol. 8, no. 4, pp. 351–362, 1991.

[6] G. A. MILLER, “The magical number seven plus or minus two: some
limits on our capacity for processing information.” Psychological review,
vol. 63, no. 2, pp. 81–97, Mar. 1956. [Online]. Available: http:
//view.ncbi.nlm.nih.gov/pubmed/13310704

[7] A. Baddeley, “Working memory: looking back and looking forward,”
Nature Reviews. Neuroscience, vol. 4, no. 10, p. 829, 2003. [Online].
Available: https://labs.wsu.edu/attention-perception-performance/documents/
2016/05/baddeley review 2003.pdf

[8] T. J. McCabe, “A complexity measure,” Software Engineering, IEEE Transac-
tions on, no. 4, pp. 308–320, 1976. [Online]. Available: http://juacompe.mrchoke.
com/natty/thesis/FrameworkComparison/A%20complexity%20measure.pdf

[9] M. H. Halstead, Elements of software science, ser. Elsevier computer science li-
brary : operational programming systems series. New York, NY: North-Holland,
1977.

[10] A. J. Albrecht and J. E. Gaffney, “Software function, source lines of code, and
development effort prediction: a software science validation,” Software Engineer-
ing, IEEE Transactions on, no. 6, pp. 639–648, 1983.

52

http://dx.doi.org/10.1109/ms.2012.86
http://dx.doi.org/10.1109/ms.2012.127
http://www.drdobbs.com/architecture-and-design/why-we-need-a-theory-for-software-engine/220300840
http://www.drdobbs.com/architecture-and-design/why-we-need-a-theory-for-software-engine/220300840
http://dx.doi.org/10.1207/s15516709cog1202_4
http://view.ncbi.nlm.nih.gov/pubmed/13310704
http://view.ncbi.nlm.nih.gov/pubmed/13310704
https://labs.wsu.edu/attention-perception-performance/documents/2016/05/baddeley_review_2003.pdf
https://labs.wsu.edu/attention-perception-performance/documents/2016/05/baddeley_review_2003.pdf
http://juacompe.mrchoke.com/natty/thesis/FrameworkComparison/A%20complexity%20measure.pdf
http://juacompe.mrchoke.com/natty/thesis/FrameworkComparison/A%20complexity%20measure.pdf

[11] Y. Wang, “On the cognitive complexity of software and its quantification and
formal measurement,” International Journal of Software Science and Computa-
tional Intelligence (IJSSCI), vol. 1, no. 2, pp. 31–53, 2009.

[12] J. Shao and Y. Wang, “A new measure of software complexity based on cognitive
weights,” Electrical and Computer Engineering, Canadian Journal of, vol. 28,
no. 2, pp. 69–74, 2003.

[13] P. Naur and B. Randell, Eds., Software Engineering: Report of a Conference
Sponsored by the NATO Science Committee, Garmisch, Germany, 7-11 Oct.
1968, Brussels, Scientific Affairs Division, NATO, 1969. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1102020

[14] B. Moseley and P. Marks, “Out of the Tar Pit,” Complexity. [Online]. Available:
http://shaffner.us/cs/papers/tarpit.pdf

[15] S. Hastie and S. Wojewoda. (2015, Oct.) Standish Group 2015 Chaos Report
- Q&A with Jennifer Lynch. [Online]. Available: https://www.infoq.com/
articles/standish-chaos-2015

[16] M. Jørgensen and K. Moløkken-Østvold, “How large are software cost
overruns? A review of the 1994 CHAOS report,” Information and Software
Technology, vol. 48, no. 4, pp. 297–301, Apr. 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2005.07.002

[17] R. L. Glass, “The Standish report: does it really describe a software crisis?”
Communications of the ACM, vol. 49, no. 8, pp. 15–16, Aug. 2006. [Online].
Available: http://dx.doi.org/10.1145/1145287.1145301

[18] R. C. Martin, J. O. Coplien, K. Wampler, J. W. Grenning, B. L. Schuchert,
J. Langr, T. R. Ottinger, and M. C. Feathers, Clean code : a handbook of agile
software craftsmanship, 1st ed. Prentice Hall, Aug. 2016. [Online]. Available:
http://www.worldcat.org/isbn/0132350882

[19] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick,
R. C. Martin, S. Mallor, K. Shwaber, and J. Sutherland, “The Agile Manifesto,”
The Agile Alliance, Tech. Rep., 2001.

[20] K. Beck, Test Driven Development: By Example, 1st ed. Addison-Wesley
Professional, Nov. 2002. [Online]. Available: http://www.worldcat.org/isbn/
0321146530

[21] E. Hendrickson, “Driving Development with Tests: ATDD and TDD,” in STAR-
WEST. Software Quality Engineering, Oct. 2008.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, 1st ed. Addison-Wesley Professional,
Nov. 1994. [Online]. Available: http://www.worldcat.org/isbn/0201633612

53

http://portal.acm.org/citation.cfm?id=1102020
http://shaffner.us/cs/papers/tarpit.pdf
https://www.infoq.com/articles/standish-chaos-2015
https://www.infoq.com/articles/standish-chaos-2015
http://dx.doi.org/10.1016/j.infsof.2005.07.002
http://dx.doi.org/10.1145/1145287.1145301
http://www.worldcat.org/isbn/0132350882
http://www.worldcat.org/isbn/0321146530
http://www.worldcat.org/isbn/0321146530
http://www.worldcat.org/isbn/0201633612

[23] E. Freeman, B. Bates, K. Sierra, and E. Robson, Head First Design Patterns: A
Brain-Friendly Guide, 1st ed. O’Reilly Media, Nov. 2004. [Online]. Available:
http://www.worldcat.org/isbn/0596007124

[24] G. Booch, R. A. Maksimchuk, M. W. Engle, B. J. Young, J. Conallen, and
K. A. Houston, Object-Oriented Analysis and Design with Applications (3rd
Edition), 3rd ed. Addison-Wesley Professional, Apr. 2007. [Online]. Available:
http://www.worldcat.org/isbn/020189551X

[25] A. Shalloway and J. R. Trott, Design Patterns Explained: A New Perspective on
Object-Oriented Design (2nd Edition), 2nd ed. Addison-Wesley Professional,
Oct. 2004. [Online]. Available: http://www.worldcat.org/isbn/0321247140

[26] K. Beck, W. Cunningham, and W. S. Services. (1989) A laboratory for teaching
object-oriented thinking. http://c2.com/doc/oopsla89/paper.html. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.4074

[27] R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing Object-Oriented
Software, 1st ed. Prentice Hall, Jun. 1990. [Online]. Available: http:
//www.worldcat.org/isbn/0136298257

[28] G. Wilson, “What We Actually Know About Software Development, and Why
We Believe It’s True,” in CUSEC, 2010.

[29] R. A. Tarmizi and J. Sweller, “Guidance during mathematical problem solving.”
Journal of educational psychology, vol. 80, no. 4, p. 424, 1988.

[30] F. P. Brooks, The Mythical Man-Month: Essays on Software Engineering, An-
niversary Edition (2nd Edition), anniversary ed. Addison-Wesley Professional,
Aug. 1995. [Online]. Available: http://www.worldcat.org/isbn/0201835959

[31] K. Beck, Extreme Programming Explained: Embrace Change, us ed ed.
Addison-Wesley Professional, Oct. 1999. [Online]. Available: http://www.
worldcat.org/isbn/0201616416

[32] P. McBreen, Software Craftsmanship: The New Imperative, 1st ed. Addison-
Wesley Professional, Sep. 2001. [Online]. Available: http://www.worldcat.org/
isbn/0201733862

[33] E. W. Dijkstra, “Letters to the Editor: Go to Statement Considered Harmful,”
Commun. ACM, vol. 11, no. 3, pp. 147–148, Mar. 1968. [Online]. Available:
http://dx.doi.org/10.1145/362929.362947

[34] ——, “Notes on structured programming. 1969, appeared in OJ Dahl, EW Di-
jkstra, and CAR Hoare (eds): Structured Programming,” 1972.

[35] B. W. Kernighan and D. M. Ritchie, The C Programming Language, 2nd ed.
Prentice Hall, Apr. 1988. [Online]. Available: http://www.worldcat.org/isbn/
0131103628

54

http://www.worldcat.org/isbn/0596007124
http://www.worldcat.org/isbn/020189551X
http://www.worldcat.org/isbn/0321247140
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.4074
http://www.worldcat.org/isbn/0136298257
http://www.worldcat.org/isbn/0136298257
http://www.worldcat.org/isbn/0201835959
http://www.worldcat.org/isbn/0201616416
http://www.worldcat.org/isbn/0201616416
http://www.worldcat.org/isbn/0201733862
http://www.worldcat.org/isbn/0201733862
http://dx.doi.org/10.1145/362929.362947
http://www.worldcat.org/isbn/0131103628
http://www.worldcat.org/isbn/0131103628

[36] D. L. Parnas, “On the Criteria to Be Used in Decomposing Systems into
Modules,” Commun. ACM, vol. 15, no. 12, pp. 1053–1058, Dec. 1972. [Online].
Available: http://dx.doi.org/10.1145/361598.361623

[37] A. C. Kay, “The Early History of Smalltalk,” SIGPLAN Not., vol. 28, no. 3,
pp. 69–95, Mar. 1993. [Online]. Available: http://doi.acm.org/10.1145/155360.
155364

[38] D. E. Knuth, Literate Programming (Center for the Study of Language and
Information - Lecture Notes), 1st ed. Center for the Study of Language and
Inf, Jun. 1992. [Online]. Available: http://www.worldcat.org/isbn/0937073806

[39] ——, “Literate Programming,” The Computer Journal, vol. 27, no. 2,
pp. 97–111, Jan. 1984. [Online]. Available: http://comjnl.oxfordjournals.org/
content/27/2/97.full.pdf+html

[40] N. Ramsey, “Literate Programming Simplified,” IEEE Softw., vol. 11, no. 5, pp.
97–105, Sep. 1994. [Online]. Available: http://dx.doi.org/10.1109/52.311070

[41] G. White and M. Sivitanides, “Cognitive Differences Between Procedural Pro-
gramming and Object Oriented Programming,” Information Technology and
Management, vol. 6, no. 4, pp. 333–350, Oct. 2005.

[42] C. Douce, “The stores model of code cognition,” in In Programmer Psychology
Interest Group, 2008. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.222.9075

[43] B. Curtis, “Measurement and experimentation in software engineering,” Proceed-
ings of the IEEE, vol. 68, no. 9, pp. 1144–1157, 1980.

[44] B. Curtis, I. Forman, R. Brooks, E. Soloway, and K. Ehrlich, “Psychological
perspectives for software science,” Information Processing & Management,
vol. 20, no. 1-2, pp. 81–96, Jan. 1984. [Online]. Available: http:
//dx.doi.org/10.1016/0306-4573(84)90041-4

[45] R. C. Clark, F. Nguyen, and J. Sweller, Efficiency in Learning: Evidence-Based
Guidelines to Manage Cognitive Load. Pfeiffer, Dec. 2005. [Online]. Available:
http://www.worldcat.org/isbn/0787977284

[46] N. Hollender, C. Hofmann, M. Deneke, and B. Schmitz, “Integrating cognitive
load theory and concepts of human–computer interaction,” Computers in
Human Behavior, vol. 26, no. 6, pp. 1278–1288, Nov. 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.chb.2010.05.031

[47] S. Oviatt, “Human-centered Design Meets Cognitive Load Theory: Designing
Interfaces That Help People Think,” in Proceedings of the 14th Annual
ACM International Conference on Multimedia, ser. MULTIMEDIA ’06.
New York, NY, USA: ACM, 2006, pp. 871–880. [Online]. Available:
http://dx.doi.org/10.1145/1180639.1180831

55

http://dx.doi.org/10.1145/361598.361623
http://doi.acm.org/10.1145/155360.155364
http://doi.acm.org/10.1145/155360.155364
http://www.worldcat.org/isbn/0937073806
http://comjnl.oxfordjournals.org/content/27/2/97.full.pdf+html
http://comjnl.oxfordjournals.org/content/27/2/97.full.pdf+html
http://dx.doi.org/10.1109/52.311070
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.222.9075
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.222.9075
http://dx.doi.org/10.1016/0306-4573(84)90041-4
http://dx.doi.org/10.1016/0306-4573(84)90041-4
http://www.worldcat.org/isbn/0787977284
http://dx.doi.org/10.1016/j.chb.2010.05.031
http://dx.doi.org/10.1145/1180639.1180831

[48] J. Rumbaugh, R. Jacobson, and G. Booch, The Unified Modelling Language
Reference Manual, 1st ed. Addison-Wesley, Jan. 1999. [Online]. Available:
www.amazon.co.uk/exec/obidos/ASIN/020130998X/026-2174472-9898019

[49] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development
Process, 1st ed. Addison-Wesley Professional, Feb. 1999. [Online]. Available:
http://www.worldcat.org/isbn/0201571692

[50] K. Beck, Implementation Patterns, 1st ed. Addison-Wesley Professional, Nov.
2007. [Online]. Available: http://www.worldcat.org/isbn/0321413091

[51] M. Fowler, Patterns of Enterprise Application Architecture, 1st ed. Addison-
Wesley Professional, Nov. 2002. [Online]. Available: http://www.worldcat.org/
isbn/0321127420

[52] T. Parr, Language Implementation Patterns: Create Your Own Domain-
Specific and General Programming Languages (Pragmatic Programmers),
1st ed. Pragmatic Bookshelf, Jan. 2010. [Online]. Available: http:
//www.worldcat.org/isbn/193435645X

[53] L. Rising and N. S. Janoff, “The Scrum software development process for small
teams,” Software, IEEE, vol. 17, no. 4, pp. 26–32, Jul. 2000. [Online]. Available:
http://dx.doi.org/10.1109/52.854065

[54] D. J. Anderson, Kanban: Successful Evolutionary Change for Your
Technology Business. Blue Hole Press, Apr. 2010. [Online]. Available:
http://www.worldcat.org/isbn/0984521402

[55] A. Hunt and D. Thomas, The Pragmatic Programmer: From Journeyman to
Master, 1st ed. Addison-Wesley Professional, Oct. 1999. [Online]. Available:
http://www.worldcat.org/isbn/020161622X

[56] M. Fowler and K. Beck, Refactoring improving the design of existing
code, 1st ed. Addison-Wesley, Jul. 2013. [Online]. Available: http:
//www.worldcat.org/isbn/0201485672

[57] W. F. Opdyke, “Refactoring object-oriented frameworks,” Ph.D. dis-
sertation, University of Illinois at Urbana-Champaign, 1992. [Online].
Available: http://www-public.it-sudparis.eu/∼gibson/Teaching/CSC7302/
ReadingMaterial/Opdyke92.pdf

[58] R. C. Martin, Agile Software Development, Principles, Patterns, and
Practices, 1st ed. Prentice Hall, Oct. 2002. [Online]. Available: http:
//www.worldcat.org/isbn/0135974445

[59] B. Liskov, “Keynote Address - Data Abstraction and Hierarchy,” in Addendum
to the Proceedings on Object-oriented Programming Systems, Languages and
Applications (Addendum), ser. OOPSLA ’87. New York, NY, USA: ACM,
1987, pp. 17–34. [Online]. Available: http://dx.doi.org/10.1145/62138.62141

56

www.amazon.co.uk/exec/obidos/ASIN/020130998X/026-2174472-9898019
http://www.worldcat.org/isbn/0201571692
http://www.worldcat.org/isbn/0321413091
http://www.worldcat.org/isbn/0321127420
http://www.worldcat.org/isbn/0321127420
http://www.worldcat.org/isbn/193435645X
http://www.worldcat.org/isbn/193435645X
http://dx.doi.org/10.1109/52.854065
http://www.worldcat.org/isbn/0984521402
http://www.worldcat.org/isbn/020161622X
http://www.worldcat.org/isbn/0201485672
http://www.worldcat.org/isbn/0201485672
http://www-public.it-sudparis.eu/~gibson/Teaching/CSC7302/ReadingMaterial/Opdyke92.pdf
http://www-public.it-sudparis.eu/~gibson/Teaching/CSC7302/ReadingMaterial/Opdyke92.pdf
http://www.worldcat.org/isbn/0135974445
http://www.worldcat.org/isbn/0135974445
http://dx.doi.org/10.1145/62138.62141

[60] B. Meyer, Object-Oriented Software Construction (Book/CD-ROM) (2nd
Edition), 2nd ed. Prentice Hall, Apr. 1997. [Online]. Available: http:
//www.worldcat.org/isbn/0136291554

[61] A. Abran, P. Bourque, R. Dupuis, and J. W. Moore, Eds., Guide to the Software
Engineering Body of Knowledge - SWEBOK. Piscataway, NJ, USA: IEEE Press,
2001.

[62] F. DeRemer and H. Kron, “Programming-in-the Large Versus Programming-in-
the-small,” SIGPLAN Not., vol. 10, no. 6, pp. 114–121, Apr. 1975. [Online].
Available: http://dx.doi.org/10.1145/390016.808431

[63] A. Hunt, Pragmatic Thinking and Learning: Refactor Your Wetware (Pragmatic
Programmers), 1st ed. Pragmatic Bookshelf, Nov. 2008. [Online]. Available:
http://www.worldcat.org/isbn/1934356050

[64] C. Alexander, The timeless way of building. New York: Oxford University Press,
1979, vol. 1.

[65] P. Chandler and J. Sweller, “The split-attention effect as a factor in the design
of instruction,” British Journal of Educational Psychology, vol. 62, no. 2, pp.
233–246, 1992.

[66] S. Kalyuga, P. Ayres, P. Chandler, and J. Sweller, “The Expertise Reversal
Effect,” Educational Psychologist, vol. 38, no. 1, pp. 23–31, Mar. 2003. [Online].
Available: http://dx.doi.org/10.1207/s15326985ep3801 4

[67] K. Pugh, Interface-Oriented Design (Pragmatic Programmers). Pragmatic
Bookshelf, 2006.

[68] F. Paas, J. E. Tuovinen, H. Tabbers, and P. W. M. Van Gerven, “Cognitive
load measurement as a means to advance cognitive load theory,” Educational
psychologist, vol. 38, no. 1, pp. 63–71, 2003.

[69] F. G. W. C. Paas, J. J. G. Van Merriënboer, and J. J. Adam,
“Measurement of cognitive load in instructional research,” Perceptual and
motor skills, vol. 79, no. 1, pp. 419–430, 1994. [Online]. Available: https://
www.researchgate.net/profile/Fred Paas/publication/15390085 Measurement
of cognitive load in instructional research/links/55ad2fdb08ae98e661a41759/
Measurement-of-cognitive-load-in-instructional-research.pdf

[70] R. Brunken, J. L. Plass, and D. Leutner, “Direct measurement of cognitive load
in multimedia learning,” Educational psychologist, vol. 38, no. 1, pp. 53–61,
2003. [Online]. Available: http://steinhardtapps.es.its.nyu.edu/create/courses/
2174/reading/Bruenken Plass Leutner EP.pdf

[71] A. Degroot, Thought and Choice in Chess (Psychological Studies), 2nd ed.
Mouton De Gruyter, 1968. [Online]. Available: http://www.worldcat.org/isbn/
9027979146

57

http://www.worldcat.org/isbn/0136291554
http://www.worldcat.org/isbn/0136291554
http://dx.doi.org/10.1145/390016.808431
http://www.worldcat.org/isbn/1934356050
http://dx.doi.org/10.1207/s15326985ep3801_4
https://www.researchgate.net/profile/Fred_Paas/publication/15390085_Measurement_of_cognitive_load_in_instructional_research/links/55ad2fdb08ae98e661a41759/Measurement-of-cognitive-load-in-instructional-research.pdf
https://www.researchgate.net/profile/Fred_Paas/publication/15390085_Measurement_of_cognitive_load_in_instructional_research/links/55ad2fdb08ae98e661a41759/Measurement-of-cognitive-load-in-instructional-research.pdf
https://www.researchgate.net/profile/Fred_Paas/publication/15390085_Measurement_of_cognitive_load_in_instructional_research/links/55ad2fdb08ae98e661a41759/Measurement-of-cognitive-load-in-instructional-research.pdf
https://www.researchgate.net/profile/Fred_Paas/publication/15390085_Measurement_of_cognitive_load_in_instructional_research/links/55ad2fdb08ae98e661a41759/Measurement-of-cognitive-load-in-instructional-research.pdf
http://steinhardtapps.es.its.nyu.edu/create/courses/2174/reading/Bruenken_Plass_Leutner_EP.pdf
http://steinhardtapps.es.its.nyu.edu/create/courses/2174/reading/Bruenken_Plass_Leutner_EP.pdf
http://www.worldcat.org/isbn/9027979146
http://www.worldcat.org/isbn/9027979146

[72] D. Egan and B. Schwartz, “Chunking in recall of symbolic drawings,” vol. 7, no. 2,
pp. 149–158, 1979. [Online]. Available: http://dx.doi.org/10.3758/bf03197595

[73] P. Benner, “Using the Dreyfus Model of Skill Acquisition to Describe and
Interpret Skill Acquisition and Clinical Judgment in Nursing Practice and
Education,” Bulletin of Science, Technology & Society, vol. 24, no. 3, pp. 188–199,
Jun. 2004. [Online]. Available: http://dx.doi.org/10.1177/0270467604265061

[74] K. Ehrlich and E. Soloway, “Human Factors in Computer Systems,”
J. C. Thomas and M. L. Schneider, Eds. Norwood, NJ, USA: Ablex
Publishing Corp., 1984, ch. An Empirical Investigation of the Tacit
Plan Knowledge in Programming, pp. 113–133. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=823

[75] R. S. Rist, “Plans in Programming: Definition, Demonstration, and
Development,” in Papers Presented at the First Workshop on Empirical
Studies of Programmers on Empirical Studies of Programmers. Norwood,
NJ, USA: Ablex Publishing Corp., 1986, pp. 28–47. [Online]. Available:
http://portal.acm.org/citation.cfm?id=28884

[76] S. E. Dreyfus and H. L. Dreyfus, “A five-stage model of the mental activities
involved in directed skill acquisition,” DTIC Document, Tech. Rep., 1980.

[77] Y.-H. Choe, C.-Y. Jong, and S. Han, “Software cognitive information measure
based on relation between structures,” arXiv preprint arXiv:1304.0374, 2013.
[Online]. Available: https://arxiv.org/pdf/1304.0374.pdf

[78] L. Carlson. (2014) Career Path of a Program-
mer. https://www.ctl.io/developers/blog/post/career-path-of-a-programmer/.
[Online]. Available: https://www.ctl.io/developers/blog/post/
career-path-of-a-programmer/

[79] J. Atwood. (2008) The Years of Experience Myth.
https://blog.codinghorror.com/the-years-of-experience-myth/. [Online]. Avail-
able: https://blog.codinghorror.com/the-years-of-experience-myth/

[80] T. Mastaglio and J. Rieman, “How experts infer novice programmer expertise:
a protocol analysis of LISP code evaluation,” in Proc. Empirical Studies of Pro-
grammers, Fourth Workshop, 1991, pp. 177–195.

[81] E. Soloway and K. Ehrlich, “Empirical studies of programming knowledge,”
IEEE Transactions on software engineering, no. 5, pp. 595–609, 1984.

[82] P. Graham, “Beating the Averages,” 2001. [Online]. Available: http:
//www.paulgraham.com/avg.html

[83] S. Gilbert and N. Lynch, “Brewer’s Conjecture and the Feasibility of Consistent,
Available, Partition-tolerant Web Services,” SIGACT News, vol. 33, no. 2,
pp. 51–59, Jun. 2002. [Online]. Available: http://doi.acm.org/10.1145/564585.
564601

58

http://dx.doi.org/10.3758/bf03197595
http://dx.doi.org/10.1177/0270467604265061
http://portal.acm.org/citation.cfm?id=823
http://portal.acm.org/citation.cfm?id=823
http://portal.acm.org/citation.cfm?id=28884
https://arxiv.org/pdf/1304.0374.pdf
https://www.ctl.io/developers/blog/post/career-path-of-a-programmer/
https://www.ctl.io/developers/blog/post/career-path-of-a-programmer/
https://blog.codinghorror.com/the-years-of-experience-myth/
http://www.paulgraham.com/avg.html
http://www.paulgraham.com/avg.html
http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601

APPENDIX A

LIKERT SCALE FOR CONTROL STUDY

Cognitive Code Study Code Paths Likert Scale A Likert Scale is a psychometric scale
that is commonly used in Cognitive Load Theory driven trials to gauge the subjective
level of effort someone feels they need to apply to understand a given stimulus.

1. Email address *

2. How hard is this method to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

3. How hard is this method to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

4. How hard is this method to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

5. How hard is this method to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

6. How hard is this method to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

59

7. How hard is this method to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

8. How hard is this method to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

9. How hard is this method to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

10. How hard is this method to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

11. How hard is this method to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

Send me a copy of my responses.

60

APPENDIX B

LIKERT SCALE FOR EXPERIMENTAL STUDY

Cognitive Code Study Code Paths Likert Scale A Likert Scale is a psychometric scale
that is commonly used in Cognitive Load Theory driven trials to gauge the subjective
level of effort someone feels they need to apply to understand a given stimulus.

1. Email address *

2. How hard is this code to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

3. How hard is this code to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

4. How hard is this code to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

5. How hard is this code to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

6. How hard is this code to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

61

7. How hard is this code to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

8. How hard is this code to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

9. How hard is this code to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

10. How hard is this code to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

11. How hard is this code to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

12. How hard is this code to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

13. How hard is this code to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

62

14. How hard is this code to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

15. How hard is this code to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

16. How hard is this code to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

17. How hard is this code to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

18. How hard is this code to understand? Mark only one oval.

1 2 3 4 5 6 7

Very easy Very hard

63

APPENDIX C

MEASURING THE COGNITIVE LOAD OF CODE:

Investigating the use of CLT techniques to minimize debugging time and errors
C.1 Review

As I established at the beginning of this dissertation, Cognitive Load Theory
is a fruitful field of principles from instructional and user interface design that lies
fallow for software engineering. Professional software engineering involves many non-
programming related activities, but the core unifying glue is always code. As software
engineering practitioner literature has argued, code that is poorly written and difficult
to understand can cost companies time, money, and even–such as in the case of the
HEARTBLEED OpenSSL bug– expose massive security vulnerabilities just due to a
missing set of “ ” for an if-statement.

Code style is arguably important, but attempts to analytically quantify the im-
pact of different techniques remains more art than science. Additionally, researchers
such as Lionel Briad and Ivar Jacobson have decried the lack of strong theoretical
principles for software engineering. This work explores the intersection of Cogni-
tive Load Theory and software engineering best practices to answer the question:
“Is there a relationship between evidence driven best practices for organizing educa-
tional content and published best practices for writing code?” Experiment: Fix a bug
in date-time manipulation in Joda Time I chose to apply software engineering best
practice techniques identified in Clean Code and Refactoring to a popular open-source
Java library called Joda-time. Joda-time is one of the most highly-used libraries in
the Java ecosystem. Jodatime sits in the dependency tree of many popular software
packages such as Spring, the Lift web application framework, Hibernate annotations,
and many, many more. As such, this is not a contrived exercise dreamed up by
a graduate student in a lab to show an effect. This is real, battle-tested, used by
millions code.

I also chose Joda-time because it is written in Java. Java and C++ are the most
well-known programming languages in the community. Java is taught in many col-
lege curriculums; finding familiar programmers is less difficult than other languages.
Joda-time solves a very general problem–date & time manipulation. Most languages
have date libraries for common operations like arithmetic, formatting, or timezone
conversion. Good and usable libraries provide broad, usable abstractions for compli-
cated functionality. Date & Time manipulation is very complicated, often causing
bugs even in major professional software engineering environments.

C.2 Bug: ISO8601 Years

The “devil in the detail” is all of the edge cases. One of the devilish details is the
existence of a large, amorphous, ever-changing set of formats describing a date. The
International Standards Organization attempted to ameliorate this with ISO8601,
which defines a canonical format for the interchange of dates and times across locales.
One of the quirks of the standard is that the published format is YYYY-MM-DD,

64

however, the standard allows for more than 4-digit years in cases where sender and
receiver have agreed upon extra digits by prepending with a + or - [± YYYYY].

Jodatime did not originally account for this. This led to https://github.com/JodaOrg/joda-
time/issues/86. Hari Shankar explored the depths of the code and identified an issue
and a fix. He did not report how long it took to find the bug, or how difficult it was to
come up with a solution. When I first found this issue, it was still open. In October
of 2015, Steven Colebourne (primary author/maintainer of the library) merged in
Shankar’s fix.

C.3 Analysis of Accepted Solution

The accepted solution follows a common maintenance programmer practice: change
as little code as possible and duplicate where necessary and with slight tweaks to
achieve desired behavior. It is not exactly but similar in vein to “Programming By
Difference.” It is a conservative approach that tends to be favored when code is in
obsolescence, has a large number of consumers, or is otherwise hard to change.

“Other reasons” that code can be hard to change include a lack of confidence in
correct behavior, or difficulty in understanding algorithms and data structures written
by someone else. The commit that introduced the fix included unit test cases that
manifest the bug (though notably only try 5 digit years, perhaps not fully exercising
failure modes), suggesting the maintainer understood the code enough to augment
the existing test suite, a software best practice. The original code was not written
solely by Stephen Colebourne. Attribution information in the comments suggests it
was a collaborative effort between Colebourne, Brian S. O’Neill, and Fredrik Borgh.
It’s possible this had an effect on the aggressiveness of the fix.

Using SonarQube 5.4 for analysis, we find that the DateTimeFormatterBuilder
alone has 1600 LoC. 2625 total lines (including comments) with 162 issues found via
static source analysis, with 2.3% duplications, estimated to take 2.5 days to fix. It
has a Cyclomatic Complexity score of 550, the highest in the library.

When gathering statistics of the library with the “Run Tests with Coverage” op-
tion of IDEA IntelliJ, Joda Time exhibits an impressing 98% class/91% line/90%
method coverage. Such a high level of coverage potentially provides developers the
option to experiment with more drastic structural Refactoring and verify existing be-
havior, but time and other issues may not always make such re-architecture possible.

C.4 Experiment: contrast debugging time and performance of accepted solution
versus CLT optimized

For the purposes of this experiment, we hold the state of JodaTime as reflected in
Git commit on August 2nd 2015 as the “control” group, not including the given fix.
We use the provided fix as the “gold standard”, as it was accepted by the core library
contributor. We follow a 2x2 factorial design where we account for novice/expert and
control/experimental for debugging time, number of defects introduced as measured
by failing tests, and perceived cognitive load as measured on our Likert Scale.

With such setup in mind, I will proceed to show how I applied software engineer-
ing best practices influenced by Cognitive Load Theory to develop the experimental
treatment.

65

C.5 Development of Experimental Version

C.5.1 Starting small: sequencing, chunking, and intrinsic complexity at the
variable and method level

I began with trying to simplify a complicated if-statement that included assign-
ment, array indexing, and bounding checking in one compound predicate. I was
guided by the presence of a comment. Robert Martin’s Clean Code suggests that
“Comments are Lies.” They often become out of date as code changes with time.

Comments also signal a failure to communicate, a missed opportunity for the code
to be self-descriptive. A programmer who reads a comment incurs the additional cog-
nitive load of reading the comment, having to verify whether it accurately summarizes
the situation, and maintaining a mental mapping between the descriptive comment
and the cryptic code. Cognitive Load Theory shows that redundant information
adds extraneous cognitive load–learning outcomes for material that has a picture and
paragraph repetitively describing the same phenomena are generally improved if the
information is concisely expressed in one form. Thus, we use the technique of IN-
TRODUCE EXPLAINING VARIABLE to make the conditional more descriptive.
Realizing that these temporary variables had added lines to answer a limited scope
question within the body of a method that was already 64 lines long, increasing Ger-
mane Cognitive Load for understanding the full execution of this method, I used the
CLT technique of managing Germane Cognitive Load by sequencing and chunking,
applying REPLACE TEMP WITH QUERY to push knowledge of this question into
a cohesive chunk, a method.

Figure C.1: insert caption

66

When I ran the tests, I discovered something troubling: a test was broken. The
behavior had changed.

Tests run: 4161, Failures: 3, Errors: 1, Skipped: 0, Time elapsed:
6.298 sec <<<FAILURE! - in org.joda.time.TestAllPackages

testFormat year(org.joda.time.format.TestDateTimeFormat) Time elapsed:
0.015 sec <<<ERROR!

java.lang.StringIndexOutOfBoundsException: String index out of range:
1

at java.lang.String.charAt(String.java:646)
at org.joda.time.format.DateTimeFormatterBuilder$NumberFormatter.parseInto(DateTimeFormatterBuilder.java:1314)
at org.joda.time.format.DateTimeFormatter.parseDateTime(DateTimeFormatter.java:879)
at org.joda.time.format.TestDateTimeFormat.testFormat year(TestDateTimeFormat.java:225)

I stared at the code for a good 20 minutes, not understanding what went wrong.
Opdyke defines Refactoring as “structural code changes that exhibit no external be-
havioral difference.” Clearly what I’d done had ended up not being Refactoring, de-
spite the fact that I’d leveraged the baked in functionality of IDEA IntelliJ Ultimate
Edition 14, which includes a robust static analysis checker that usually detects such
changes. Pouring over the expression hardly helped, the change “looked safe.” At-
taching a debugger and stepping through the broken test revealed the problem.

The predicate of the if statement had caught my eye for having a lot of complexity
and a comment to describe it. A hidden complexity that wasn’t immediately obvious
to me was that it relied on the short-circuit evaluation behavior of the —— operator
in Java as an implicit GUARD CLAUSE

length + 1 >= limit || (c = text.charAt(position + length + 1)) <’0’
|| c >’9’)

In the previous expression, the length + 1 >= limit prevents the text.charAt(position
+ length + 1) from being evaluated when length + 1 would result trying to index
a character outside of the string, causing an error. Thus, there is an additional
semantic that provides safety based on the ordering of expressions.

This is exactly the type of hidden complexity that creates anxiety in maintenance
engineers in modifying existing code. It is typified by reliance on a subtle semantic
provided by the language runtime. This can be considered germane cognitive load–
language semantics are part of a programmer’s toolkit. Expert programmers often
use these kinds of techniques, as experts are shown to better handle an increase in
germane cognitive load. Novices, however, may experience information overload.

I can simplify this by rewriting the code to be a little longer, but more explicit.

67

Figure C.2: insert caption

In this example, I make the GUARD CLAUSE more explicit and match the stan-
dard form, and use an explanatory named variables to describe the why of the calcu-
lation’s what.

C.5.2 Building up: moving on to the class level

Returning my attention to the original expression, I apply the same INTRODUCE
EXPLANATORY VARIABLE and EXTRACT METHOD technique.:

68

Figure C.3: insert caption

I also made the chunked methods static to signify that they were “pure functions.”
They had no reliance on the DateTimeFormatterBuilder’s internal state and solely
exist as calculations. This structural change helped me realize that much of the
body of the parse method was isolated from the rest of the class. This is often
an opportune situation to apply REPLACE METHOD WITH METHOD OBJECT,
which can decrease the length and intrinsic cognitive load of the original class via
chunking its content with the created collaborating class.

69

Figure C.4: insert caption

70

Figure C.5: insert caption

Figure C.6: insert caption

71

Figure C.7: insert caption

Figure C.8: insert caption

72

Figure C.9: insert caption

73

Figure C.10: insert caption

Figure C.11: insert caption

The new class is 97 lines long, with the majority of the work happening in the 63

74

line long parse method. The result of parse can be tested and understood indepen-
dently of details from the NumberFormatter inside of DateTimeFormatterBuilder.

C.6 Reducing Control Flow Complexity

Some might argue that a 63 line method is “simple enough.” Working heuristics of
working memory, however, suggest that the human brain can fit between 4-9 “chunks”
in memory at a particular time. This aligns well with the guidance in Clean Code that
“Functions should do One Thing” and “Functions should be small”. Consequently,
it’s worth turning attention to simplifying the parse method.

The cognitive complexity of the function is compounded by a variety of control
structures. There are 2 while loops, 9 if statements, and 3 return statements. Ex-
tracting methods out of such a function is difficult because the multiple control flow
breaks and updates to local variables require reasoning that is beyond many static
analysis code tools, such as the Refactoring tools in IDEA Intellij. Often it helps to
start “from the bottom up”, simplifying small blocks of complicated control structures
until the tangled web of control flow clarifies.

First, a little cleanup. I can remove an unused import, as imports add to the
cognitive load of a class by signaling interconnection with other components of a
system.

Figure C.12: insert caption

Next, I simplify according to the Principle of Least Astonishment by replacing
the use of a StringIndexOutOfBoundsException for flow control (commonly argued
in the literature) with a GUARD CLAUSE.

75

Figure C.13: insert caption

The body of parse has a strong visual indicator of separation between the first
while loop, which updates the position and length variables, and a second “section”
that calculates the value. In order to be able to break out methods effectively, I want
to simplify the control flow of each.

Examining the body of the while loop, I see that it basically increments length
every iteration. It breaks out of the loop if the current character is not a digit, and
applies some special case updates if the first character is an operator and the parser
knows the input contains one. I can simplify the special casing using explanatory
variables and use REPLACE NESTED CONDITIONALS WITH GUARD CLAUSES
to reduce the number of nested scopes. I also changed the previously extracted
method isPastBoundaryOrNotDigit - -which by its very name does more than 1
thing– into 2 separate methods that are invoked by the caller.

Figure C.14: insert caption

76

Figure C.15: insert caption

Seeking to further simplify the remaining if/else block inside the body of the
while, I looked carefully at the special case logic for an operator and the else body
and determined that both code paths incremented length. This type of conditional
check to do the same thing in both cases is clearly extraneous cognitive load, so I
applied a variant of CONSOLIDATE CONDITIONAL EXPRESSION.

77

Figure C.16: insert caption

I then had an opportunity to simplify the while loop further by applying a similar
procedure to a variant of REMOVE CONTROL FLAG to remove the break statement
and clarify the loop predicate.

78

Figure C.17: insert caption

With this logic greatly simplified, I’m now able to push the calculation into a
smaller, more cohesive chunk of logic using REPLACE METHOD WITH METHOD
OBJECT.

Figure C.18: insert caption

79

Figure C.19: insert caption

Figure C.20: insert caption

Next I wanted to ensure that the new class was inline with CLT’s guidance on
sequencing content effectively for comprehension, in line with the recommendations
of Clean Code’s STEPDOWN RULE/The Newspaper Metaphor.

80

Figure C.21: insert caption

The new structure of the parse code had successfully dealt with the length and
position calculation loop, but still had 35 lines. Much of the next body of work was
involved in calculating a value with the stored computed values of OffsetCalculator.
While this type of code practice is common, and the resulting OffsetCalculator is
arguably much simpler, it violates the Tell, Don’t Ask principle of object-oriented
programming. Tell, Don’t Ask helps manage the intrinsic cognitive load of systems
by pushing operations on data closer to the data, making code more declarative.
Following this approach, we move the value calculation into the OffsetCalculator
and eliminate FastNumberParser.

81

Figure C.22: insert caption

Figure C.23: insert caption

82

Figure C.24: insert caption

Figure C.25: insert caption

83

Figure C.26: insert caption

Figure C.27: insert caption

84

Figure C.28: insert caption

Figure C.29: insert caption

We can simplify the body of calculate further by applying EXTRACT METHOD,
INTRODUCE EXPLAINING VARIABLE, and applying One Return Per Function,
an arguably easier-to-understand practice stemming from the principles of Structured
Programming, to simplify control.

85

Figure C.30: insert caption

Figure C.31: insert caption

86

Figure C.32: insert caption

I then simplified the logic of calculateValueForLengthBetween1And8 by apply-
ing EXTRACT METHOD and inverting the logic of the conditional, as Clean Code
suggests negatives are harder to understand and the inversion allowed me to remove
a return statement that broke control flow.

Figure C.33: insert caption

I then started seeking code to remove, as I detected that some of the methods
were redundant from features already offered by the built-in Java libraries. I also
applied further EXTRACT METHOD to describe the algorithm declaratively using
names and separate the levels of abstraction according to the Newspaper Metaphor.

87

Figure C.34: insert caption

Figure C.35: insert caption

88

Figure C.36: insert caption

At this point, from a pure “code metrics” perspective, OffsetCalculator was
significantly simpler. Each method was no more than 9 lines long, the class had 3
getter methods, 3 “utility” style 1-line descriptive methods, and 8 “logical” methods.
Being pretty experienced with the code at this point, it was fairly easy for me to see
where to “apply the fix” to resolve the bug in this reduced scope.

C.6.1 Checking my biases: adapting to peer feedback

I was pretty confident the new code would be significantly easier to understand. In
order to validate this hypothesis, I sought feedback from some expert and novice soft-
ware engineers. In these dry-run, non-formal talk throughs, I discovered something
surprising. Although the OffsetCalculator was chunked well for comprehensibility,
its overall role within the parsing process was difficult to understand. The obvi-
ously tricky useFastParser() that used bit shifting was cognitively dense, but even
the calculation of length and position that immediately preceded it were difficult to
grok in terms of the intent of the calculation. Initial passes at debugging showed
that the architecture itself, from the relationship of the DateTimeFormatter to the
DateTimeFormatterBuilder to the NumberFormatter to the OffsetCalculator,
was complex. I realized I need to spend more time with the DateTimeFormatter to
make it easier to bypass its functionality and get to the OffsetCalculator quicker.

C.6.2 Architectural adaptation: Simplifying DateTimeFormatter

I started with applying EXTRACT METHOD on spots of obvious duplication the
calculation of Chronology, into a method called getChronology. I then saw repeated
duplication with only detail variation in parseDateTime, parseLocalDateTime, and
parseMutableDateTime, so I extracted what was different in those methods out. In

89

order to create a seam for myself to be able to move the body of those methods into
an independently simplified piece without changing the externally facing interface, I
extracted the body of the public methods into separate internal private methods.

Figure C.37: insert caption

90

Figure C.38: insert caption

Figure C.39: insert caption

91

Figure C.40: insert caption

Figure C.41: insert caption

I then pushed the responsibility for Chronology calculation into a ChronologyFactory.

92

Figure C.42: insert caption

93

Figure C.43: insert caption

94

Figure C.44: insert caption

I then saw an opportunity. The similarity of the bodies of the parseDateTime,
parseLocalDateTime, and parseMutableDateTime methods suggested to me that a
TEMPLATE METHOD was hidden in this class.

The use of a Design Pattern can increase the Germane Cognitive Load of an archi-
tecture, which can be more difficult for novices to understand. However, application
of this pattern here likely resulted in a dramatically simpler DateTimeFormatter and
better coherence in the architecture. Following Guideline 25: Write High Coher-
ent Texts for Low Knowledge Readers, this strategic use of a design pattern seemed
likely to make the code easier to understand for novices as well. Hence, I started
working to make this pattern manifest. Through a series of commits, I realized that
DateTimeFormatter had a lot of FEATURE ENVY with DateTimeParserBucket.

95

Figure C.45: insert caption

Figure C.46: insert caption

96

Figure C.47: insert caption

Figure C.48: insert caption

97

Figure C.49: insert caption

Figure C.50: insert caption

98

Figure C.51: insert caption

Figure C.52: insert caption

At this point, I recognized that much of the logic in parseIntoInstant in DateTimeFormatter
was similar to the other parsing methods. DateTimeFormatter also found itself doing

99

more work in its internals than necessary because the ReadWriteableInstant inter-
face was missing an update feature. As that functionality seems implied by the name,
I added it to the interface and pushed some responsibility onto MutableDateTime.

Figure C.53: insert caption

100

Figure C.54: insert caption

101

Figure C.55: insert caption

At this point, I was able to push the entire responsibility of parsing into the
Instant into DateTimeParserBucket.

102

Figure C.56: insert caption

103

Figure C.57: insert caption

DateTimeFormatter’s parse methods were now doing very little besides using
its state to set up a DateTimeParserBucket. It seemed like DateTimeParserBucket
could be the permanent home of much of this functionality. I could move the function-
ality over. Along the way, I could start by removing some of the cognitive complexity
of ChronologyFactory’s reassignment to input parameters simultaneously.

104

Figure C.58: insert caption

105

Figure C.59: insert caption

106

Figure C.60: insert caption

107

Figure C.61: insert caption

108

Figure C.62: insert caption

At this point, it felt like I was succeeding more in moving complexity around than
removing it. DateTimeParserBucket had most of the functionality related to parsing
moved to it, as its internal state was a big part of most of the calculations. But I
was no closer to my originally envisioned TEMPLATE METHOD. I also worried that
more responsibility on an originally used intermediate calculation scratchpad object
may belie its importance in the process. I sought further simplification. I started
by reducing the scope of some methods of DateTimeParserBucket and re-arranging
them according to the Newspaper Metaphor.

109

Figure C.63: insert caption

110

Figure C.64: insert caption

111

Figure C.65: insert caption

112

Figure C.66: insert caption

This helped me identify that the best approach for getting to the desired architec-
ture was to split apart the functionality that had migrated into DateTimeParserBucket
into another collaborating object.

113

Figure C.67: insert caption

114

Figure C.68: insert caption

115

Figure C.69: insert caption

116

Figure C.70: insert caption

117

Figure C.71: insert caption

118

Figure C.72: insert caption

119

Figure C.73: insert caption

120

Figure C.74: insert caption

Figure C.75: insert caption

With the new delegate SimpleParser in place, I had a target to move towards the
desired TEMPLATE METHOD hierarchy. First, I started by inlining some meth-

121

ods I’d previously broken out. Refactoring operations are often well-known to be
reversible, as exploring in one direction can lead to realization that the best path
was another. I also applying some EXTRACT PARAMETER to reduce the length
of method signatures, as the cognitive complexity of methods rises with the length
its signature.

Figure C.76: insert caption

122

Figure C.77: insert caption

Figure C.78: insert caption

123

Figure C.79: insert caption

Figure C.80: insert caption

124

Figure C.81: insert caption

Figure C.82: insert caption

125

Figure C.83: insert caption

Figure C.84: insert caption

Now there was obvious duplication and an outline structure in the body of the
parse* methods. I was now able to apply EXTRACT METHOD to identify the
points that varied.

126

Figure C.85: insert caption

127

Figure C.86: insert caption

128

Figure C.87: insert caption

Figure C.88: insert caption

129

Figure C.89: insert caption

Figure C.90: insert caption

130

Figure C.91: insert caption

Figure C.92: insert caption

131

Figure C.93: insert caption

Figure C.94: insert caption

I then had a couple of options. The traditional TEMPLATE METHOD approach

132

would require refactoring the SimpleParser to be a fully-fledged object instead of a
utility class full of static methods. This approach required some intensive structural
modifications, though is fairly straightforward. However, it is an approach most
optimally suited for a traditional object-oriented programming paradigm.

Functional Programming is experiencing a revival in the software engineering com-
munity. As Moore’s Law runs into physical nanoscale limitations, chip manufacturers
have sought to improve speeds by increasing the number of cores on a chip and pro-
moting parallel computing. Pure, stateless functions are easier to parallelize. Hence,
languages like Ruby, Python, Javascript, Scala, and Clojure began supporting func-
tional paradigms. Eventually, both Java 8 and C++ 11 added functional support
features. Many young programmers learning today may have more experience with
functional idioms than in the past.

One common functional idiom is the notion of a callback function. When using
callbacks, one passes a function to be invoked to another function. The other function
is then able to execute and invoke the passed function at its leisure. I explored this
approach with a subsequent set of refactoring.

With some slight caveats to handle the difference in exception handling introduced
by Java’s Callable, this approach compiles and executes successfully. The question
is, is it simpler?

Callbacks are often argued to make code harder to understand. Some argue that
they can be used effectively and comprehensibly if the number is limited. There is
no data comparing the cognitive load induced by following such an approach versus
traditional OOP. This seems like ground rife for future research.

Returning our attention to simplifying the usage patterns, an obvious opportunity
to reduce the Split Attention Effect is to use constructor chaining when the initializa-
tion semantics are the same and the only difference is a variable number of arguments.
Hence, we can simplify one of the DateTimeFormatter constructors as follows.

Figure C.95: insert caption

We can also significantly simplify the signatures of SimpleParser when we realize
that most of its arguments are pulled from DateTimeFormatter.

133

Figure C.96: insert caption

This significantly simplifies DateTimeParserBucket:

Figure C.97: insert caption

134

SimpleParser then provides a FACADE that wraps its callback generation and
generalized getResult method.

Figure C.98: insert caption

Figure C.99: insert caption

135

Figure C.100: insert caption

Figure C.101: insert caption

At this point, we are ready to apply our instance transformation to form a TEM-
PLATE METHOD and have individual STRATEGY implementations for each return

136

type.

Figure C.102: insert caption

137

Figure C.103: insert caption

138

Figure C.104: insert caption

139

Figure C.105: insert caption

Figure C.106: insert caption

140

Figure C.107: insert caption

141

Figure C.108: insert caption

142

Figure C.109: insert caption

143

Figure C.110: insert caption

At this point, we’ve replaced the SimpleParser with a ParsingStrategy and
a FormatterParsingStrategy that holds the guts of the getResult method, with
subclass implementations for each return type.

I now also had a straightforward point to simplify common logic. I also had an
interface that I could use to unify the differences between the API design of parseInto
which mutates the input parameter and returns the resulting position, and the other
parse methods. This reduces the architectural complexity of DateTimeFormatter
by making all of the parsing follow a common pattern.

144

Figure C.111: insert caption

Figure C.112: insert caption

145

Figure C.113: insert caption

When I first tried to make the ReadWritableInstantParsingStrategy, I tried di-
rectly extending FormatterParsingStrategy like the other implementations. When
I ran the tests, they failed. Something was different about the way it worked. Luckily,
having a separate interface for ParsingStrategy from the abstract class implemen-
tation of FormatterParsingStrategy allowed me to move forward to advance archi-
tectural similarity without being blocked. I was able to create the implementation
with only slight duplication of work done in the FormatterParsingStrategy. When I
think about it further, it seems like the primary differences between ReadWritableInstantParsingStrategy
and the other implementations is that the starting number of milliseconds for the
DateTimeParserBucket is not 0, and neither is the position for the DateTimeParser.
I could’ve spent some time refactoring FormatterParsingStrategy to parametrize
it such that ReadWritableInstantParsingStrategy could extend it. I decided not
to because this code path is unlikely to get explored during the study and the goal of
this work was to simplify DateTimeFormatter.

C.6.3 Signaling architecture by organization – using packages as chunks

I now had a simpler DateTimeFormatter whose parsing methods delegated to
implementations of parsing STRATEGY. However, the package org.joda.time.format
had grown more imposing by adding all of these new classes. We can use packages to
organize classes, again applying the concepts of sequencing and chunking to manage
how much context a programmer needs to keep in their head at one time. Hence, we
add a new package org.joda.time.format.parsing and move the new classes over.

146

Figure C.114: insert caption

Figure C.115: insert caption

147

Figure C.116: insert caption

Figure C.117: insert caption

148

Figure C.118: insert caption

Figure C.119: insert caption

149

Figure C.120: insert caption

Figure C.121: insert caption

Another heuristic to reduce the number of classes is to find LAZY CLASS and
investigate whether we can MOVE METHOD. As ChronologyFactory is merely
exposing a method that could be a STATIC FACTORY METHOD on Chronology,
we move the functionality over.

150

Figure C.122: insert caption

Figure C.123: insert caption

151

Figure C.124: insert caption

C.6.4 Making Derived Components Expressive, the value of names

Are we done? The resultant code is structurally simpler than before. The out-
standing question is, does it communicate the design intent of the original algo-
rithm in a concise and clear way? Without access to the direct authors of the code
and given the complexity of the original, it’s difficult to say. Debugging through
the code flow into the area of the bug, we see much of the code is now delega-
tion: DateTimeFormatter ->DateTimeParsingStrategy ->FormatterParsingStrategy
->NumberFormatter ->OffsetCalculator. Most of the work involved in this bug is in
the OffsetCalculator...could the code be clearer?

Consultation with other engineers suggested that the OffsetCalculator has variable
names that were mostly consequential to its original sources. Revisiting those names
may enhance clarity. Additionally, much of the work of calculateLength is done once,
ultimately to be used by calcluateValue. This work can be moved to the constructor,
with expressive variables assigned. I can clean this up further.

152

Figure C.125: insert caption

Figure C.126: insert caption

153

Figure C.127: insert caption

Figure C.128: insert caption

154

Figure C.129: insert caption

The clearer variable names and re-arranged methods lead me to realize there is a
clean separation between two distinct concepts missing in the OffsetCalculator. Much
of the work it does results from FEATURE ENVY of the CharSequence. Procedural
style code that asks questions such as “does the text begin with a + or -?” would be
better answered independently from the calculation.

C.6.5 The Final Form – calculate in the NumberFormatter, NumericSequence

I can decompose the OffsetCalculator back into a data type that provides the
necessary functionality on top of CharSequence and a calculation that uses that data
type to calculate a value in the NumberFormatter implementation of InternalParser.
This aligns most well with the Cognitive Load Theory principle of “write high cohesive
content for low-knowledge learners.”

Figure C.130: insert caption

155

Figure C.131: insert caption

Figure C.132: insert caption

156

Figure C.133: insert caption

Figure C.134: insert caption

157

Figure C.135: insert caption

Figure C.136: insert caption

158

Figure C.137: insert caption

C.7 The Experimental Solution

This has been a lot of work! But the resulting solution is very satisfying. In fact,
it requires adding no additional code. The correct solution to fixing the bug actually
involves removing some existing confusing code.

Figure C.138: insert caption

Just like that, the bug is resolved.

C.7.1 Side-by-Side comparison

According to SonarQube 5.4, the metrics for the experimental version are shown
below.

159

Figure C.139: insert caption

Figure C.140: insert caption

160

Figure C.141: insert caption

Figure C.142: insert caption

Comparing these with the original DateTimeFormatter and DateTimeFormatter-
Builder;

161

Figure C.143: insert caption

Figure C.144: insert caption

From a pure complexity metrics perspective, it doesn’t look like much has changed.
DateTimeFormatterBuilder went from a control complexity score of 550 to 543 in the
experimental. The complexity per function dropped from 3.5 from to 3.4. The number
of lines of code dropped by 21. The number of duplications dropped from 2.3% to
0.7%.

DateTimeFormatter shows a slightly more pronounced effect. The complexity
score dropped from 98 to 64. The complexity per function went from 2.5 to 1.7. The
number of lines of code dropped by 110. The 2.9% duplications dropped to 0.

Are these changes enough to show a measurable difference in comprehensibility
and debugging time? If current best practice software engineering complexity metrics

162

are sufficient, I do not expect to find a statistically significant difference. Thus, I am
ready to conduct a study.

163

	LIST OF TABLES
	LIST OF FIGURES
	1
	2
	2.1 Establishing the link between Cognitive Load Theory and Software Engineering through Software Craftsmanship
	2.1.1 Open-Closed Principle
	2.1.2 Newspaper Metaphor
	2.1.3 Design Patterns
	2.1.4 Intrinsic, Germane, and Extraneous Cognitive Load
	2.1.5 Split Attention Effect
	2.1.6 Expertise Reversal Effect
	2.1.7 Applied Example of the types of Cognitive Load in software

	2.2 Theory & Predictions
	2.3 Research Question: Can Cognitive Load Theory provide empirical evidence and a conceptual framework for the efficacy of Refactoring?
	2.3.1 Why will this be meaningful?
	2.3.2 What could go wrong?
	2.3.3 How can one measure the Cognitive Load of code?

	3
	3.1 Participants
	3.2 Materials
	3.2.1 Software Chosen - Joda Time
	3.2.2 Why Joda Time?
	3.2.3 What experimental intervention did I make to Joda-time?
	3.2.4 What change did the participants have to make?
	3.2.5 Bug: ISO8601 Years
	3.2.6 Analysis of Accepted Solution

	3.3 Experimental Environment
	3.3.1 Aside: The IDE effect
	3.3.2 Cognitive Load measurement - Likert Scale
	3.3.3 Minimal Cognitive Load of expressions axioms
	3.3.4 Likert Scale: line-by-line
	3.3.5 Minimal Cognitive Load of lines axioms
	3.3.6 Likert Scale: blocks/scopes
	3.3.7 Minimal cognitive load of blocks/scopes axioms
	3.3.8 Open Question: How do we measure code flow cognitive complexity?

	4
	4.1 Materials Design
	4.2 Intervention, Measures, and Procedure

	5
	5.1 Mean Response Time for participants who fixed the bug
	5.2 Mean Regressions for those who did not fix the bug
	5.3 Perceived Cognitive Load
	5.4 Discusion

	6
	7
	8
	REFERENCES
	A
	B
	C
	C.1 Review
	C.2 Bug: ISO8601 Years
	C.3 Analysis of Accepted Solution
	C.4 Experiment: contrast debugging time and performance of accepted solution versus CLT optimized
	C.5 Development of Experimental Version
	C.5.1 Starting small: sequencing, chunking, and intrinsic complexity at the variable and method level
	C.5.2 Building up: moving on to the class level

	C.6 Reducing Control Flow Complexity
	C.6.1 Checking my biases: adapting to peer feedback
	C.6.2 Architectural adaptation: Simplifying DateTimeFormatter
	C.6.3 Signaling architecture by organization – using packages as chunks
	C.6.4 Making Derived Components Expressive, the value of names
	C.6.5 The Final Form – calculate in the NumberFormatter, NumericSequence

	C.7 The Experimental Solution
	C.7.1 Side-by-Side comparison

