Does Beautiful Code Matter? We think, So…
By Nicholas Vaidyanathan
Introduction
Software engineering is one of the youngest and most dynamic fields in engineering. Naur and Randell helped formally define and introduce Software engineering as an area of study in 1968 with their landmark NATO software engineering report. [1] The most striking finding in the report was the startling conclusion that 68% of all software projects fail. Since then, researchers have investigated many different approaches to extract software from the “tar pit” [2]. Explorations have spanned a variety of both technical and non-technical solutions, spawning research in areas as disparate as software cost and estimation, software architecture and design, and software project and process management. Nevertheless, despite the dedicated effort of researchers and practitioners, in over 40 years since the landmark initial paper, research has made minimal ingress against the problem. A follow-up report by the Standish group in the 1990s suggested that overruns are still close to 189% [3], though the numbers are in dispute [4] [5].
Software Engineering research hasn’t transformed programming
One possible root cause of this churn arises from the inherent difficulty of the base activity of software engineering: computer programming. Leading software engineering practitioners argue that there are better ways to engineer software [6] [7], the Agile software philosophy. Tools such as Test-Driven Development [8] [9], Design Patterns [10] [11], and Object-Oriented Programming [12] [13] [14] [15]. Unfortunately, there is a dearth of empirical evidence supporting these practices [16] [17]. Additionally, the discipline has yet to develop a strong, unifying theory that can serve as an epistemological framework for software engineering study [18] [19].
Research contributions
Establish viability of Cognitive Load Theory for software engineering analysis
I will explore using the principles from Cognitive Load Theory to measure the impact of applying these software engineering best practice heuristics:
1. Choosing meaningful variable names with length proportional to variable scope through its relationship with the CLT principle of helping learners exploit examples through self-explanations
2. Sizing methods to “Do One Thing” in accordance with the CLT principle of writing high coherent texts for low-knowledge readers
3. Arranging methods within a class from higher level of abstraction to lower levels, the so-called “Newspaper Metaphor”, in accordance with the CLT principle of Focus Attention and Avoid Split Attention
Study and document the effects of naming, scope size, and scope arrangement and the cognitive load they have on software engineers
I will contribute my findings back to the engineering community and build the body of knowledge about the efficacy of software engineering best practices that seek to manage cognitive load. Supporting evidence for such practices is currently scant [20] [21] [22]. This work will help build a body of evidence for these practices and establish a theoretical framework for the best practice principles.

Research Questions
1. How do software best practices connect with principles of Cognitive Load Theory?
2. How can one measure the Cognitive Load of a piece of software?
3. Is there a relationship between naming, method length, class length, and package size and the cognitive load of the code?
4. Is software with less Cognitive Load easier to find defects in and correct?
5. Is software with less Cognitive Load easier to extend with new functionality?
Past research into computer programming
Structured Programming
Others have attempted to improve programming practice in the past. Edsgar Djikstra introduced the notion of Structured Programming with the landmark Go To Statement Considered Harmful [23]. The efficacy of this theory proved sound with time. Structured programming is the root ancestor of procedural programming, imperative programming, and object-oriented programming.
Literate Programming
Donald Knuth developed Literate Programming [24] [25]. Programmers who write in a “literate” style combine prose and narrative to elaborate the function of the application. The author of a literate program writes with readability and comprehensibility in mind as a direct consequent of the formulations in accompanying text. Literate Programming has yet to penetrate the majority of the programming zeitgeist, remaining a fairly niche research interest. Nevertheless, many authors have experimented with it and reported enhanced clarity [26].
Code Metrics
Software metrics comprise effort by the software engineering research community to quantify the results of the software process. The original, most cited software metric is the Line of Code (LOC) and the analogous KLOC (thousands of lines of code). An oft-maligned metric— that does not account for the internal complexity or structure of a program— LOC has nonetheless remained common due to simplicity of measurement. Attempts to provide more information about the inner working of a program have led to the creation of metrics such as Halstead’s Software Science [27], McCabe’s Cyclomatic Complexity [28], Albrecht’s Function Points [29], and CUOCOMO [30] [31]. These approaches have found limited success. Empirical studies have produced very little conclusive evidence as to the efficacy of these metrics [32], with many equivocal examples [33]. Modern metrics research, however, is attempting to incorporate elements of cognitive science into the art of understanding software.
The cognitive aspect of computer programming
Wang’s study of the cognitive complexity of software serves as a bridge for the metrics work into this world [34] [35].Wang develops a set of meta-cognitive models for the description and understanding of computer programs, then constructs a set of experiments that compare and contrast the cognitive complexity of different constructs. The argument is that the metrics generated through such analysis are more accurate descriptors of software complexity than symbolic, structural, or functional complexity metrics.
Incorporating cognitive science beyond cognitive metrics
Cognitive metrics for software scratches the surface of what cognitive science can offer computer science and software engineering. It is widely held that software maintainers spend more time reading code than they do writing new code. Additionally, many developers who write new code often find themselves working with unfamiliar technologies or in an unfamiliar domain. Some say the key to becoming a successful software engineer is continuous learning. Although many colloquially held idioms regarding the similarities between programming and education exist, no unifying link in theory has tied successful programming outcomes to established educational theory.
Cognitive Load Theory to inform programming
One such relevant theory is Cognitive Load Theory [36], which informs the way educational designers seek to develop curricular materials. Human Computer Interface (HCI) designers leverage it to provide better user experiences [37] [38]. Nevertheless, programmers have not applied this work towards actually changing the way they write code for others.
Establishing the link between Cognitive Load Theory and Software Engineering through Software Craftsmanship
Software Engineering through the 1990s and early 2000s
Software Engineering literature of the early 1990s continued the work of the 1980s in software processes and modeling, leading to the development of the Unified Modeling Language (UML) [39] and the associated Rational Unified Process (RUP) [40]. In 1994, the Gang of Four published their seminal Design Patterns [10] catalog, a hybrid design/architecture and implementation publication that inspired a rush of patterns oriented research activity in the community, including implementation patterns [41], testing patterns [8], enterprise application architecture patterns [42], language implementation patterns [43], and others. In February 2001, a group of experienced and well-respected software engineers published the Agile Manifesto [44]. A counter-point to RUP, agile software development emphasized less documentation, tools, and repeatable processes. Instead, it championed greater emphasis on relationship building and collaboration. This approach quickly became popular with industry, especially with the rise of web application development. Its emphasis on results effectively captured the spirit of the rise of the Internet and fast-paced nature of web development. Consequently, an explosion of interest for effective ways of organizing and managing agile software teams led to the development of models such as Extreme Programming [45], Scrum [46], and Kanban [47].
The Rise of Software Craftsmanship
Many of the forerunners of Agile were leading evolution in multiple areas of software engineering. Andrew Hunt and Dave Thomas wrote The Pragmatic Programmer [48], fleshing out the baseline principles of the Agile Manifesto into a programming philosophy built on pragmatism. Kent Beck helped elaborate Extreme Programming [45], codified best practice Implementation Patterns [41], and wrote the most popular Java variant of the xUnit testing framework, JUnit, as part of his work in proselytizing Test-Driven Development [8]. Martin Fowler developed a widely regarded Refactoring patterns catalog [49] extending from Bill Opdike’s PhD thesis [50] to provide a structured, behavior-preserving methodology for modifying existing code to promote clarity and reuse. Robert C. Martin helped expound some basic principles that have become the bedrock of SOLID object-oriented software development [51], including the Single Responsibility Principle, the Interface Segregation Principle, and Dependency Inversion alongside Barbara Liskov’s Substitution Principle [52] and Bertrand Meyer’s Open/Closed Principle [53].
Is it against Software Engineering, or a new kind of software engineering?
These contributions have ironically transformed much of the software engineering landscape—particularly in web and mobile software development, the preeminent paradigms of the 21st century—at arguably a broader scale than traditional software engineering research. Recognition of this dichotomy between the research emphasis and practical literature has fueled the rise of the Software Craftsmanship movement [54]. Software Craftsmanship espouses treating programming as a craft more than a science or an engineering discipline. In such epistemology, dedicated artisans construct the best software. Such artisans hone their craft through discipline, practice, and apprenticeship/journeyman style interactions with masters.
One could see Software Craftsmanship as a reaction against and rejection of Software Engineering. It eschews the emphasis on process, models, and up-front work to build software systems. Alternately, one could argue that it represents a competing school of thought. Much like Cubism and Expressionism were competing schools of thought in 20th century painting, software craftsmanship and SWEBOK [55] [56] based approaches may be seen as competing schools of thought within 21st century software engineering. One can relate this to the difference shown in DeRemer & Kron’s "Programming-in-the large versus programming-in-the-small" [57].
How do the best practices espoused by software craftsmen relate to cognitive load theory?
I propose the following hypotheses:
· The Single Responsibility Principle is a technique that reduces Extraneous Cognitive Load and manages the Intrinsic Cognitive Load of classes by promoting smaller classes.
· The Open/Closed Principle helps beginners manage Germane Cognitive Load by enabling consumers of classes to leverage existing components while avoiding cognitive overload by abstracting away inner details.
· The Newspaper Metaphor is a technique for minimizing the Split Attention Effect, reducing Extraneous Cognitive Load.
· Design Patterns form a higher-level vocabulary that increases Germane Cognitive Load for intermediate/advanced developers, allowing richer conversations with less distracting detail.
· Smaller functions/methods with descriptive names align closely with Miller’s Magic Number Seven Plus or Minus Two [58], allowing programmers to hold more of a method’s functionality in their heads at once. This reduces context switching and makes the overall component easier to understand. This pattern scales. Small methods, small classes, small packages, small libraries, small frameworks are more cognitively available for novices, enabling quicker, less error-prone development.
How will we show that Cognitive Load Theory applied to Software Engineering improves software outcomes?
Measuring Cognitive Load in software
I begin by establishing a baseline level of Cognitive Load for a popular open-source library used by many developers. Comprehension measurement will use a standard CLT measurement technique, using a 7-point Likert Scale. Participants will markup both experimental and control versions.
Managing Cognitive Load in software
The experimental version will be specially crafted to reduce the number of lines in a method, the number of methods in a class, and the number of classes in a package to the 7+-2 guideline. I will rearrange method ordering according to the Newspaper Metaphor, and break out helper objects according to the SRP and OCP. If these tasks are impossible at identified areas of developer difficulty, further study will be required. It is possible that areas of code with high cognitive load manifest for more oblique reasons than lack of best practices. Such a revelation may trigger additional areas of opportunity to study weights and biasing factors of different contributors of Cognitive Load, potentially resulting in a prioritization ordering of maintainability optimizations.
Analyzing Effects of Cognitive Load Management in Software
I will have participants try two programming tasks: one to debug, the other to extend the code. I will partition the participants to have a control treatment (the original code) and an experimental version (the refactored). For these tasks, I will again measure the level of cognitive load. I will also measure the time to complete, the number of bugs introduced via broken tests, and the amount of code produced. I expect to find that the experimental version will take participants less mean time to debug and will result in fewer bugs when participants attempt to extend the project by adding functionality.
In detail
For this study, I will use the Joda Time date/time library. Joda is a popular open-source library used in thousands of projects for date/time manipulation for Java. Java already has a Date/Calendar library built into the language designed for these types of operations. However, many developers within the Java community were dissatisfied with the complexity of the interface Date/Calendar provides for achieving operations such as Date/Time arithmetic, time zone conversion, and formatting dates to standard formats such as ISO8601. Because of this complexity--which this research can show is a measurable difference in the cognitive load imposed by these two libraries-- Joda Time has become so popular that the author of the library was asked to completely re-write date/time handling for Java 8.
Why Joda-time?
1. Joda Time seeks to reduce the complexity of an existing interface, meaning that it has made an effort to manage the intrinsic cognitive load of date/time manipulation for users.
2. Joda Time has a very large user base, is a high impact project within the Java community
3. Joda Time handles a general enough problem, date and time processing, that programmers across different software engineering domains—whether they build web applications, defense contracting products, or video games—are likely to be able to “grok” it. While esoteric details of handling locale differences and nanoseconds may themselves be complex, the generality of the problem makes it more suitable for development by engineers with various backgrounds than a task such as modifying a Machine Learning library like Weka.
How will we use Joda-time?
In this study, I will use two versions of Joda Time. The control version is unmodified source from Github. The experimental version is a refactored control version aligning with precepts of Cognitive load Theory such that:
1. Variable identifiers are re-named for clarity
a. Clean Code: Avoid mental mappings CLT: Integrate Explanatory Text Close to Related Visuals on Pages and Screens to Avoid Split Attention
2. Each method has no more than 7+-2 lines,
a. Clean Code : functions do no more than one thing CLT: Pare Content Down to Essentials
3. Methods are arranged according to their usage
a. Clean Code : Newspaper Metaphor CLT : Display Worked Examples and Completion Problems in Ways That Minimize Extraneous Cognitive Load
4. Each class has no more than 7+-2 methods
a. Clean Code : Classes do no more than one thing CLT: Write High Coherent Texts for Low Knowledge Readers
5. Each package has no more than 7+-2 classes
a. Clean Code : Systems & Emergence CLT : Teach System Components Before Teaching the Full Process
Who will participate? What will they do?
This research aims to show results that are generalizable to the programmer population as a whole about the relationship between refactoring techniques and their effect on the cognitive load of a piece of software. There are no currently accepted set of attributes that for modeling programmer skill. For the purposes of this study, we will investigate the differences between programmer samples selected among the following attributes:
· Years of programming experience
· Novice (< 5 years professional experience)
· Expert (5+ years professional experience)
There will two versions of the experimental instrument available.
· Control : Original, unaltered version of JodaTime from GitHub
· Experimental: Refactored JodaTime according to CLT principles
Participants will use the experimental instrument to complete 2 tasks.
1. Implement a fix for https://github.com/JodaOrg/joda-time/issues/86.
2. Implement a feature request for https://github.com/JodaOrg/joda-time/issues/17.
During this study, we measure the effects of the programming experience of language expertise on the response time, perceived cognitive load, and number of failing unit tests using a 2x2 factorial design with blocking and randomization.
· Time to complete each task
· Perceived Cognitive Load of code listings using speak-aloud protocol and 7 point Likert Scale
· Defects introduced via changes
· Test suite will be run after completion. Failures in test suite will be counted as defects.
Potential software sources of bias include participant familiarity with:
· the Java programming language
· the JodaTime library
· Date/time arithmetic and managing time in code
· programming and software engineering literature.
Non-software related factors include
· time of day
· environmental factors in the deviation from “normal programming place” (office, coffee shop, home, et cetera) versus “clean room”
· participant mood/focus/mental factors
We will treat non-software related factors as nuisance variables.
What are the statistical hypotheses?
The hypotheses we wish to test, in mathematical terms, are:
1. Time of completion (control) = Time of completion (experiment)
2. Perceived Cognitive Load (control) = Perceived Cognitive Load (experiment)
3. Average defects introduced (control) = average defects introduced (experiment)
We will test these hypotheses with a 95% (p < .05) confidence level and desired power of 80% (π=0.80).
Why will this be meaningful?
I expect to find the code refactored to manage cognitive load will have less average time to completion and less defects. This will enable the research community to explore further interventions and evaluate questions such as “do some principles have a higher impact when applied than others?”, “is the effect of the principles in any way tied to programming language?”, and “could results be affected familiarity with program domain?” Additionally, showing the efficacy of Cognitive Load Theory’s application to software engineering creates a wealth of opportunities to explore its recommendations for visualizations, organization of project documentation, and personalized tooling support for software engineer of various skill levels. 	Comment by jim: Does CLT suggest some practices that we should apply that are not currently best practices? In other words, how are we better off by this study of CLT?
What could go wrong?
It is possible that authors wildly misrepresent the effects of the programming heuristics. Consequently, divergent results upon measurement may be unlike previous Cognitive Load experiments. Perhaps even with classical techniques of measuring Cognitive Load we’re unable to find a relationship between programming performance and Cognitive Load optimization techniques, suggesting CLT is not as strong a fit for software as the original hypothesis supposes. Additionally, Cognitive Load Theory states the principle of the Expertise Reversal Effect, which says that some practices that highly benefit novices will flummox experts and vice-versa. I will attempt to identify instances of this by targeting an equal mix of novice and expert participants based on years of experience. One would expect that content increases Germane Cognitive Load, such as the lexicon of Design Patterns, would improve the performance of intermediate and proficient practitioners but may have induce cognitive overload—hence having a negative impact—on novice performance. Alternately, partitioning methods and classes to minimize the risk of cognitive overload may be unnecessary for an expert. Such efforts may improve novice performance, but inhibit the analysis of an expert who can “hold more of the code in their head.”	Comment by jim: What do you by “find patterns”?	Comment by jim: Do you believe some best practices fall into this area?
Research Plan
Spring 2012 – Birth of idea to study quantifiable effects of Software Craftsmanship practices and their relationship to Cognitive Load Theory
Summer 2012 – Research into software engineering best practices, reading Test-Driven Development By Example, Design Patterns Explained, Domain Driven Design
Fall 2012 -- Research into Cognitive Load Theory works by Baddeley, Sweller, vanGervan
Spring 2013 – Formulated first draft of study, read Refactoring
Summer 2013—Read Extreme Programming Explained, Effective Java
Fall 2013 – Read Programming Concurrency on the JVM, Agile Software Development: Principles, Patterns, and Practices
Spring 2014 – Read Paas et al, Research on Electronic Surveys and Measurements, for techniques of measuring cognitive load, developed proposal and iterated on experimental design
Fall 2014 – Finalize and defend proposal
Spring 2015 – Refine experiment based on feedback from Dr. Bob Atkinson, committee experimental methods expert
Fall 2015 – Conduct experiment and collect data
[bookmark: _GoBack]Winter 2015 – Synthesize results and write up final dissertation
Spring 2016 – Defend Thesis
Bibliography

[1] 	P. Naur and B. Randell, "Software Engineering: Report of a conference sponsored by the NATO Science Committee," Scientific Affairs Division, NATO, Brussels, 1968.
[2] 	B. Moseley and P. Marks, "Out of the Tar Pit," in SOFTWARE PRACTICE ADVANCEMENT (SPA), 2006.
[3] 	The Standish Group International Inc, "The Chaos Report," The Standish Group International Inc., 1994.
[4] 	M. Jørgensen and K. Moløkken-Østvold, "How large are software cost overruns? a review of the 1994 CHAOS report," Information and Software Technology, vol. 48, no. 4, pp. 297-301, 2006.
[5] 	R. L. Glass, "The Standish report: does it really describe a software crisis?," Communications of the ACM, vol. 49, no. 8, pp. 15-16, 2006.
[6] 	R. C. Martin, Clean code : a handbook of agile software craftsmanship, Prentice Hall, 2009.
[7] 	K. Beck, M. Beedle, A. von Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mellor, K. Schwaber and J. Sutherland, "Manifesto for Agile Software Development," 2001. [Online]. Available: http://agilemanifesto.org/. [Accessed 22 May 2014].
[8] 	K. Beck, Test Driven Development: By Example, Addison-Wesley Professional, 2002.
[9] 	E. Hendrickson, "Driving Development with Tests: ATDD and TDD," in STARWEST, 2008, 2008.
[10] 	E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley Professional, 1994.
[11] 	E. Freeman, E. Freeman, B. Bates and K. Sierra, Head First Design Patterns, O'Reilly Media, 2004.
[12] 	B. Grady, R. A. Maksimchuk, M. W. Engle, B. J. Young, J. Conallen and K. A. Houston, Object-Oriented Analysis and Design with Applications, Addison-Wesley Professional, 2007.
[13] 	A. Shalloway and J. R. Trott, Design Patterns Explained: A New Perspective on Object-Oriented Design, Addison-Wesley Professional, 2004.
[14] 	K. Beck, W. Cunningham and W. S. Services, "A laboratory for teaching object-oriented thinking," in OOPSLA, 1989.
[15] 	R. Wirfs-Brock, B. Wilkerson and L. Wiener, Designing Object-Oriented Software, Prentice Hall, 1990.
[16] 	G. Wilson, "What We Actually Know About Software Development, and Why We Believe It's True," in CUSEC, 2010.
[17] 	L. Briand, "Embracing the Engineering Side of Software Engineering," IEEE Software, vol. 29, no. 4, p. 96, 2012.
[18] 	P. Johnson, M. Ekstedt and I. Jacobson, "Where's the Theory for Software Engineering?," IEEE Software, vol. 29, no. 5, p. 96, 2012.
[19] 	I. Jacobson and I. Spence, "Why We Need a Theory for Software Engineering," 2 October 2009. [Online]. Available: http://www.drdobbs.com/architecture-and-design/why-we-need-a-theory-for-software-engine/220300840. [Accessed 30 May 2014].
[20] 	G. Wilson, "What We Actually Know About Software Development, and Why We Believe It's True," in CUSEC, Toronto, 2010.
[21] 	M. Hansen, R. L. Goldstone and A. Lumsdaine, "Cornell University Library," 26 April 2013. [Online]. Available: http://arxiv.org/abs/1304.5257. [Accessed 7 July 2014].
[22] 	R. D. Conceição, "Programmers," 02 April 2012. [Online]. Available: http://programmers.stackexchange.com/questions/142629/is-there-a-case-study-that-convincingly-demonstrates-that-clean-code-improved-de. [Accessed 14 July 2014].
[23] 	E. W. Dijkstra, "Letters to the editor: go to statement considered harmful," Communications of the ACM, vol. 11, no. 3, pp. 147-148, 1968.
[24] 	D. E. Knuth, "Literate Programming (Center for the Study of Language and Information - Lecture Notes)," Center for the Study of Language and Information - Lecture Notes, Stanford, 1992.
[25] 	D. E. Knuth, "Literate Programming," The Computer Journal, vol. 27, no. 2, pp. 97-111, 1984.
[26] 	N. Ramsey, "Literate Programming Simplified," IEEE Software, vol. 11, no. 5, pp. 97-105, 1994.
[27] 	M. H. Halstead, Elements of software science, New York: North-Holland, 1977.
[28] 	T. J. McCabe, "A complexity measure," Software Engineering, IEEE Transactions on, vol. 2, no. 4, pp. 308-320, 1976.
[29] 	A. J. Albrecht and J. E. Gaffney, "Software function, source lines of code, and development effort prediction: a software science validation," IEEE Transactions on Software Engineering, vol. 2, no. No. 6., pp. 639-648, 1983.
[30] 	B. W. Boehm, Software Engineering Economics, Prentice Hall, 1981.
[31] 	B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy and R. Selby, "Cost models for future software life cycle processes: COCOMO 2.0," Annals of software engineering, Vol. 1, No. 1. (1995), pp. , vol. 1, no. 1, pp. 57-94, 1995.
[32] 	B. Curtis, "Measurement and experimentation in software engineering," Proceedings of the IEEE, vol. 68, no. 9, pp. 1144-1157, 1980.
[33] 	B. Curtis, I. Forman, R. Brooks, E. Soloway and K. Ehrlich, "Psychological perspectives for software science," Information Processing & Management, vol. 20, no. 1-2, pp. 81-96, 1984.
[34] 	Y. Wang, "On the Cognitive Complexity of Software and its Quantification and Formal Measurement," International Journal of Software Science and Computational Intelligence, vol. 1, no. 2, pp. 31-53, 2009.
[35] 	J. Shao and Y. Wang, "A new measure of software complexity based on cognitive weights," Canadian Journal of Electrical and Computer Engineering, vol. 28, no. 2, pp. 69-74, 2003.
[36] 	R. C. Clark, F. Nguyen and J. Sweller, Efficiency in Learning: Evidence-Based Guidelines to Manage Cognitive Load, Pfeiffer, 2006.
[37] 	N. Hollender, C. Hofmann, M. Deneke and B. Schmitz, "Integrating cognitive load theory and concepts of human–computer interaction," Computers in Human Behavior, vol. 26 , no. 6, pp. 1278-1288, 2010.
[38] 	S. Oviatt, "Human-centered Design Meets Cognitive Load Theory: Designing Interfaces That Help People Think," in Proceedings of the 14th Annual ACM International Conference on Multimedia, Santa Barbara, 2006.
[39] 	J. Rumbaugh, R. Jacobson and G. Booch, The Unified Modelling Language Reference Manual, The Unified Modelling Language Reference Manual, 1999.
[40] 	I. Jacobson, G. Booch and J. Rumbaugh, The Unified Software Development Process, Addison-Wesley Professional, 1999.
[41] 	K. Beck, Implementation Patterns, Addison-Wesley Professional, 2007.
[42] 	M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley Professional, 2002.
[43] 	T. Parr, Language Implementation Patterns: Create Your Own Domain-Specific and General Programming Languages, Pragmatic Programmers, 2010.
[44] 	K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mallor, K. Shwaber and J. Sutherlan, "The Agile Manifesto," 17 February 2001. [Online]. Available: http://agilemanifesto.org/. [Accessed 6 July 2014].
[45] 	K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley Professional, 1999.
[46] 	L. Rising and N. S. Janoff, "The Scrum software development process for small teams," IEEE Software, vol. 17, no. 4, pp. 26-32, 2000.
[47] 	D. J. Anderson, Kanban: Successful Evolutionary Change for Your Technology Business, Blue Hole Press, 2010.
[48] 	A. Hunt and D. Thomas, The Pragmatic Programmer: From Journeyman to Master, Addison-Wesley Professional, 1999.
[49] 	M. Fowler, K. Beck, J. Brant, W. Opdyke and D. Roberts, Refactoring: Improving the Design of Existing Code, Addison-Wesley Professiona, 1999.
[50] 	W. F. Opdyke, "Refactoring object-oriented frameworks," University of Illinois at Urbana-Champaign, 1992.
[51] 	R. C. Martin, Agile Software Development, Principles, Patterns, and Practices, Prentice Hall, 2002.
[52] 	B. Liskov, "Keynote Address - Data Abstraction and Hierarchy," in Proceedings on Object-oriented Programming Systems, Languages and Applications, New York, 1987.
[53] 	B. Meyer, Object-Oriented Software Construction, Upper Saddle River: Prentice Hall, 1997.
[54] 	P. McBreen, Software Craftsmanship: The New Imperative, Addison-Wesley Professional, 2001.
[55] 	A. Abran, P. Bourque, R. Dupuis and J. W. Moore, Guide to the Software Engineering Body of Knowledge - SWEBOK, Piscataway, NJ, USA: IEEE Press, 2001.
[56] 	P. Bourque and R. Fairley, Guide to the Software Engineering Body of Knowledge, Version 3, IEEE Computer Society, 2014.
[57] 	F. DeRemer and H. Kron, "Programming-in-the large versus programming-in-the-small," in ACM SIGPLAN Notices - International Conference on Reliable Software, New York, 1975.
[58] 	G. A. MILLER, "The magical number seven plus or minus two: some limits on our capacity for processing information," Psychological review, vol. 63, no. 2, pp. 81-97, 1956.

